Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Caracterización de las pérdidas de propagación en un entorno de laboratorio a 3.7 GHz en condición de línea de visión directa

Resumen

El objetivo de este trabajo es proponer modelos experimentales de las pérdidas de propagación para canales de comunicación en entornos indoor. Se ha efectuado una caracterización experimental de las pérdidas de propagación de acuerdo con la campaña de medidas llevada a cabo en un escenario típico de un campus universitario. Estas medidas fueron realizadas en un ambiente de laboratorio a 3.7 GHz en condiciones de línea de vista y con un enfoque de banda estrecha. Las mediciones se hicieron en la noche, simulando condiciones de estacionariedad del canal de comunicaciones. Los resultados obtenidos muestran los valores de los parámetros del modelo Close-In (CI) a una distancia de referencia en espacio libre, y del modelo Floating-Intercept (FI) en términos de la distancia de separación entre el transmisor y receptor. Se debe notar que dichos valores de los modelos de pérdidas de propagación se han extraído aplicando técnicas de regresión lineal a los datos medidos. Además, concuerdan con los valores del exponente de pérdidas de propagación presentados por otros investigadores en escenarios similares. Con la implementación de estos modelos se puede describir el comportamiento de las pérdidas de propagación en este tipo de entornos, sin embargo, es necesario hacer más campañas de medición para mejorar los conocimientos de las características del canal de propagación. También, para obtener una mejor precisión en los resultados obtenidos, con el fin de optimizar el despliegue y desempeño de las futuras redes de quinta generación (5G), que combinen los entornos indoor para la prestación de sus servicios y aplicaciones.

Palabras clave

5G, ambientes indoor, caracterización de canal, exponente de pérdidas de propagación, medidas de canal, modelos de canal

PDF (English) XML (English)

Biografía del autor/a

Sandy Enrique Avella-Cely

Roles: Metodología, Validación, Análisis Formal, Investigación.

Juan Carlos Muñoz-Pérez, M.Sc.

Roles: Metodología, Validación, Análisis Formal, Investigación.

Herman Antonio Fernández-González, Ph. D.

Roles: Conceptualización, Metodología, Validación, Análisis formal, Investigación, Supervisión, Escritura– borrador original, Escritura–revisión & edición.

Lorenzo Rubio-Arjona, Ph. D.

Roles: Conceptualización, Metodología, Validación, Análisis formal, Investigación, Supervisión, Escritura– borrador original, Escritura–revisión & edición.

Juan Ribera Reig-Pascual, Ph. D.

Roles: Conceptualización, Metodología, Análisis Formal, Investigación.

Vicent Miguel Rodrigo-Peñarrocha, Ph. D.

Roles: Conceptualización, Metodología, Análisis Formal, Investigación.


Referencias

[1] J. G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A. C. K. Soong, J. C. Zhang, "What will 5G be?," IEEE Journal on selected areas in communications, vol. 32 (6), pp. 1065-1082, 2014. https://doi.org/10.1109/jsac.2014.2328098

[2] B. Ai, K. Guan, R. He, J. Li, G. Li, D. He, Z. Zhong, K. M. S. Huq, "On Indoor Millimeter Wave Massive MIMO Channels: Measurement and Simulation," IEEE Journal on Selected Areas in Communications, vol. 35 (7), pp. 1678-1690, Jul. 2017. https://doi.org/10.1109/jsac.2017.2698780

[3] J. Zhang, P. Tang, L. Tian, Z. Hu, T. Wang, H. Wang, "6–100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication," Science China Information Sciences, vol. 60 (8), e080301, 2017. https://doi.org/10.1007/s11432-016-9144-x

[4] C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, E. Hepsaydir, "Cellular Architecture and Key Technologies for 5G Wireless Communication Networks," IEEE Communications Magazine, vol. 52 (2), pp. 122-130, Feb. 2014. https://doi.org/10.1109/mcom.2014.6736752

[5] C. X. Wang, J. Bian, J. Sun, W. S. Zhang, M. G. Zhang, "A Survey of 5G Channel Measurements and Models," IEEE Communications Surveys and Tutorials, vol. 20 (4), pp. 3142-3168, 2018. https://doi.org/10.1109/comst.2018.2862141

[6] L. Rubio, J. Reig, H. Fernández, "Propagation aspects in vehicular networks," Vehicular Technologies: Increasing Connectivity, chap. 21, pp. 376-414, 2011. https://doi.org/10.5772/15650

[7] International Telecommunication Union, Guidelines for evaluation of radio interface technologies for IMT-2020, 2017. https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2412-2017-PDF-E.pdf

[8] D. P. He, B. Ai, K. Guan, L. H. Wang, Z. D. Zhong, T. Kurner, "The Design and Applications of High-Performance Ray-Tracing Simulation Platform for 5G and Beyond Wireless Communications: A Tutorial," IEEE Communications Surveys and Tutorials, vol. 21 (1), pp. 10-27, 2019. https://doi.org/10.1109/comst.2018.2865724

[9] Federal Communications Commission, The FCC's 5G FAST Plan, 2019. https://www.fcc.gov/5G

[10] European Commision-Radio Spectrum Policy Group, Strategic Roadmap Towards 5G for Europe, 2016. https://rspg-spectrum.eu/wp-content/uploads/2013/05/RPSG16-032-Opinion_5G.pdf

[11] B. Halvarsson, A. Simonsson, A. Elgcrona, R. Chana, P. Machado, H. Asplund, "5G NR testbed 3.5 GHz coverage results," in IEEE 87th Vehicular Technology Conference, 2018, pp. 1-5. https://doi.org/10.1109/vtcspring.2018.8417704

[12] A. M. Al-Samman, T. A. Rahman, T. A. Hadhrami, A. Daho, M. N. Hindia, M. H. Azmi, K. Dimyati, M. Alazab, "Comparative Study of Indoor Propagation Model Below and Above 6 GHz for 5G Wireless Networks," Electronics, vol. 8 (1), e44, Jan. 2019. https://doi.org/10.3390/electronics8010044

[13] P. Kyosti, "WINNER II channel models," IST, Tech. Rep. IST-4-027756 WINNER II D1. 1.2 V1. 2, 2007.

[14] T. S. Rappaport, Y. C. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios, J. H. Zhang, "Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks-With a Focus on Propagation Models," IEEE Transactions on Antennas and Propagation, vol. 65 (12), pp. 6213-6230, Dec. 2017. https://doi.org/10.1109/tap.2017.2734243

[15] L. Rubio, R. P. Torres, V. M. R. Peñarrocha, J. R. Pérez, H. Fernandez, J. M. M. G. Pardo, J. Reig, "Contribution to the Channel Path Loss and Time-Dispersion Characterization in an Office Environment at 26 GHz," Electronics, vol. 8 (11), e1261, Nov. 2019. https://doi.org/10.3390/electronics8111261

[16] T. S. Rappaport, R. W. Heath Jr, R. C. Daniels, J. N. Murdock, Millimeter wave wireless communications. Pearson Education, 2015.

[17] G. R. MacCartney, T. S. Rappaport, S. Sun, S. Deng, "Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz for Ultra-Dense 5G Wireless Networks," IEEE Access, vol. 3, pp. 2388-2424, 2015. https://doi.org/10.1109/access.2015.2486778

[18] A. Sreedevi, T. R. Rao, M. Susila, "Device-to-Device Radio Link Analysis at 2.4, 3.4, 5.2, 28 and 60 GHz in Indoor Communication Environments," Frequenz, vol. 73 (3-4), pp. 131-141, 2019. https://doi.org/10.1515/freq-2018-0158

[19] X. Zhou, Z. Zhong, X. Blan, R. He, R Sun, K. Guan, K. Liu, X. Guo, "Measurement and Analysis of Channel Characteristics in Reflective Environments at 3.6 GHz and 14.6 GHz," Applied Sciences-Basel, vol. 7 (2), e165, Feb. 2017. https://doi.org/10.3390/app7020165

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a