Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Desarrollo de una aplicación para el cálculo del flujo de potencia en redes DC bipolares utilizando el entorno de MATLAB

Resumen

Este trabajo plantea el diseño de una interfaz gráfica para resolver el problema de flujo de potencia en redes bipolares de corriente continua (CC) desbalanceadas mediante el método de aproximaciones sucesivas. El objetivo de la interfaz gráfica es facilitarle al usuario el cálculo del flujo de potencia sin la necesidad de conocimientos previos en lenguajes de programación. Este trabajo está dividido en tres etapas. La primera presenta el modelo matemático de flujo de potencia en redes bipolares DC desbalanceadas mediante el método de aproximaciones sucesivas. La segunda presenta la implementación de la interfaz gráfica, aplicando el modelo matemático mencionado anteriormente. La tercera etapa presenta las principales características de los sistemas DC bajo estudio, además de la solución del problema de flujo de potencia por medio del programa y una comparación con los resultados reportados en la literatura especializada. Las validaciones numéricas demuestran que el programa resuelve el flujo de potencia y encuentra la misma solución de la literatura especializada, con una eficiencia del 100%, lo cual confirma la precisión del programa y lo constituye en una fuente confiable de información. En este documento se muestra el paso a paso de la creación de la interfaz, la cual fue puesta a prueba con dos tipos de redes con el fin de corroborar la validez del programa.

Palabras clave

método de aproximaciones sucesivas, redes de corriente continua bipolares, sistemas desbalanceados, aplicación de flujo de potencia

PDF (English)

Referencias

  • M. I. Muhammad Ridzuan, N. F. Mohd Fauzi, N. N. R. Roslan, N. Mohd Saad, "Urban and rural medium voltage networks reliability assessment," SN Applied Sciences, vol. 2, 2020. https://doi.org/10.1007/s42452-019-1612-z
  • M. Lavorato, J. F. Franco, M. J. Rider, R. Romero, "Imposing Radiality Constraints in Distribution System Optimization Problems," IEEE Transactions on Power Systems, vol. 27, pp. 172-180, 2012. https://doi.org/10.1109/tpwrs.2011.2161349
  • J. A. Melo Rodriguez, C. A. Cortés Guerrero, "Análisis de vulnerabilidad de sistemas de potencia incluyendo incertidumbre en las variables con lógica difusa tipo 2," Revista Tecnura, vol. 20, no. 49, pp. 100-119, 2016. https://doi.org/10.14483/udistrital.jour.tecnura.2016.3.a07
  • P. Siano, G. Rigatos, A. Piccolo, "Active Distribution Networks and Smart Grids: Optimal Allocation of Wind Turbines by Using Hybrid GA and Multi-Period OPF," in Computational Intelligence Systems in Industrial Engineering, Atlantis Press, 2012, pp. 579-599. https://doi.org/10.2991/978-94-91216-77-0_27
  • A. Garces, "Uniqueness of the power flow solutions in low voltage direct current grids," Electric Power Systems Research, vol. 151, pp. 149-153, 2017. https://doi.org/10.1016/j.epsr.2017.05.031
  • L. Z. Lu Zhang, W. T. Wei Tang, J. L. Jun Liang, G. L. Gen Li, Y. C. Yongxiang Cai, T. Y. Tao Yan, "A medium voltage hybrid AC/DC distribution network and its economic evaluation," in 12th IET International Conference on AC and DC Power Transmission, 2016. https://doi.org/10.1049/cp.2016.0446
  • L. F. Grisales-Noreña, O. D. Montoya, W. J. Gil-González, A.-J. Perea-Moreno, M.-A. Perea-Moreno, "A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors," Electronics, vol. 9, e2062, 2020. https://doi.org/10.3390/electronics9122062
  • O. D. Montoya Giraldo, A. Arias-Londoño, A. Molina-Cabrera, "Branch Optimal Power Flow Model for DC Networks with Radial Structure: A Conic Relaxation," Tecnura, vol. 26, pp. 30-42, 2022. https://doi.org/10.14483/22487638.18635
  • W. Gil-González, O. D. Montoya, C. Restrepo, J. C. Hernández, "Sensorless Adaptive Voltage Control for Classical DC-DC Converters Feeding Unknown Loads: A Generalized PI Passivity-Based Approach," Sensors, vol. 21, e6367, 2021. https://doi.org/10.3390/s21196367
  • V. Monteiro, L. F. C. Monteiro, F. L. Franco, R. Mandrioli, M. Ricco, G. Grandi, J. L. Afonso, "The Role of Front-End AC/DC Converters in Hybrid AC/DC Smart Homes: Analysis and Experimental Validation," Electronics, vol. 10, e2601, 2021. https://doi.org/10.3390/electronics10212601
  • B. S. Chew, Y. Xu, Q. Wu, "Voltage Balancing for Bipolar DC Distribution Grids: A Power Flow Based Binary Integer Multi-Objective Optimization Approach," IEEE Transactions on Power Systems, vol. 34, pp. 28-39, 2019. https://doi.org/10.1109/tpwrs.2018.2866817
  • G. Van den Broeck, S. De Breucker, J. Beerten, J. Zwysen, M. Dalla Vecchia, J. Driesen, "Analysis of three-level converters with voltage balancing capability in bipolar DC distribution networks," in IEEE Second International Conference on DC Microgrids (ICDCM), 2017. https://doi.org/10.1109/icdcm.2017.8001052
  • A. Garcés, O.-D. Montoya, "A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms," Journal of Control, Automation and Electrical Systems, vol. 30, pp. 794-801, 2019. https://doi.org/10.1007/s40313-019-00489-4
  • L. Mackay, R. Guarnotta, A. Dimou, G. Morales-Espana, L. Ramirez-Elizondo, P. Bauer, "Optimal Power Flow for Unbalanced Bipolar DC Distribution Grids," IEEE Access, vol. 6, pp. 5199-5207, 2018. https://doi.org/10.1109/access.2018.2789522
  • J.-O. Lee, Y.-S. Kim, S.-I. Moon, "Current Injection Power Flow Analysis and Optimal Generation Dispatch for Bipolar DC Microgrids," IEEE Transactions on Smart Grid, vol. 12, pp. 1918-1928, 2021. https://doi.org/10.1109/tsg.2020.3046733
  • J. Kim, J. Cho, H. Kim, Y. Cho, H. Lee, "Power Flow Calculation Method of DC Distribution Network for Actual Power System," KEPCO Journal on Electric Power and Energy, vol. 6, pp. 419-425, 2020. https://doi.org/10.18770/KEPCO.2020.06.04.419
  • O. D. Montoya, Á. Medina-Quesada, W. Gil-González, "Solving the Power Flow Problem in Bipolar DC Asymmetric Distribution Networks Using Broyden’s Method," Sensors, vol. 23, e6704, 2023.
  • J.-O. Lee, Y.-S. Kim, J.-H. Jeon, "Generic power flow algorithm for bipolar DC microgrids based on Newton–Raphson method," International Journal of Electrical Power & Energy Systems, vol. 142, e108357, 2022.
  • S. Sepúlveda-García, O. D. Montoya, A. Garcés, "A second-order conic approximation to solving the optimal power flow problem in bipolar DC networks while considering a high penetration of distributed energy resources," International Journal of Electrical Power & Energy Systems, vol. 155, e109516, 2024.
  • C. Hernandez, W. Sánchez Huertas, V. Gómez, "Optimal Power Flow through Artificial Intelligence Techniques," Tecnura, vol. 25, pp. 150-170, 2021. https://doi.org/10.14483/22487638.18245
  • O. D. Montoya, V. M. Garrido, W. Gil-Gonzalez, L. F. Grisales-Norena, "Power Flow Analysis in DC Grids: Two Alternative Numerical Methods," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, pp. 1865-1869, 2019. https://doi.org/10.1109/tcsii.2019.2891640
  • O. D. Montoya, W. Gil-González, A. Garcés, "A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals," Electric Power Systems Research, vol. 211, e108264, 2022. https://doi.org/10.1016/j.ijepes.2020.106299
  • A. Garcés, "On the Convergence of Newton’s Method in Power Flow Studies for DC Microgrids," IEEE Transactions on Power Systems, vol. 33, pp. 5770-5777, 2018. https://doi.org/0.1109/tpwrs.2018.2820430
  • M. C. Herrera-Briñez, O. D. Montoya, L. Alvarado-Barrios, H. R. Chamorro, "The Equivalence between Successive Approximations and Matricial Load Flow Formulations," Applied Sciences, vol. 11, e2905, 2021. https://doi.org/10.3390/app11072905
  • L. Paniagua, R. B. Prada, "Voltage stability assessment using equivalent Thevenin," in IEEE Thirty Fifth Central American and Panama Convention (CONCAPAN XXXV), 2015. https://doi.org/10.1109/concapan.2015.7428499
  • O. D. Montoya, W. Gil-González, A. Garces, "Numerical methods for power flow analysis in DC networks: State of the art, methods and challenges," International Journal of Electrical Power & Energy Systems, vol. 123, e106299, 2020.
  • J. W. Simpson-Porco, F. Dorfler, F. Bullo, "On Resistive Networks of Constant-Power Devices," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, pp. 811-815, 2015. https://doi.org/10.1109/tcsii.2015.2433537
  • P. Huamaní Navarrete, "Programación de interfaz gráfica en APP Designer del MATLAB para representar la serie de Fourier en curso introductorio de telecomunicaciones," Scientia, vol. 23, pP. 199-213, 2023. https://doi.org/10.31381/scientia.v23i23.4592
  • D. Murillo-Yarce, A. Garcés-Ruiz, A. Escobar-Mejía, "Passivity-Based Control for DC-Microgrids with Constant Power Terminals in Island Mode Operation," Revista Facultad de Ingeniería Universidad de Antioquia, pp. 32-39, 2018. https://doi.org/10.17533/udea.redin.n86a05

Descargas

Los datos de descargas todavía no están disponibles.