Skip to main navigation menu Skip to main content Skip to site footer

Development of an Application for Calculating the Power Flow of Bipolar DC Networks Using the MATLAB Environment

Abstract

This work proposes the design of a graphic interface to solve the power flow problem in unbalanced bipolar direct current (DC) networks using the successive approximations method. The goal of the graphic interface is to facilitate the user's calculation of the power flow without the need for prior knowledge of programming languages. This work is divided into three stages. The first presents the mathematical power flow model for unbalanced bipolar DC networks using the successive approximations method. The second presents the implementation of the graphic interface, applying the aforementioned mathematical model. The third stage presents the main characteristics of the DC systems under study, in addition to solving the power flow problem through the program and a comparison with the results reported in the specialized literature. Numerical validations demonstrate that the program solves the power flow and finds the same solution as the specialized literature with 100% efficiency, which confirms the program's accuracy and establishes it as a reliable source of information. This document shows the step-by-step creation of the interface, which was tested with two types of networks to corroborate the validity of the program.

Keywords

bipolar direct current networks, power flow application, successive approximations method, unbalanced systems

PDF XML

References

  1. M. I. Muhammad Ridzuan, N. F. Mohd Fauzi, N. N. R. Roslan, N. Mohd Saad, "Urban and rural medium voltage networks reliability assessment," SN Applied Sciences, vol. 2, 2020. https://doi.org/10.1007/s42452-019-1612-z
  2. M. Lavorato, J. F. Franco, M. J. Rider, R. Romero, "Imposing Radiality Constraints in Distribution System Optimization Problems," IEEE Transactions on Power Systems, vol. 27, pp. 172-180, 2012. https://doi.org/10.1109/tpwrs.2011.2161349
  3. J. A. Melo Rodriguez, C. A. Cortés Guerrero, "Análisis de vulnerabilidad de sistemas de potencia incluyendo incertidumbre en las variables con lógica difusa tipo 2," Revista Tecnura, vol. 20, no. 49, pp. 100-119, 2016. https://doi.org/10.14483/udistrital.jour.tecnura.2016.3.a07
  4. P. Siano, G. Rigatos, A. Piccolo, "Active Distribution Networks and Smart Grids: Optimal Allocation of Wind Turbines by Using Hybrid GA and Multi-Period OPF," in Computational Intelligence Systems in Industrial Engineering, Atlantis Press, 2012, pp. 579-599. https://doi.org/10.2991/978-94-91216-77-0_27
  5. A. Garces, "Uniqueness of the power flow solutions in low voltage direct current grids," Electric Power Systems Research, vol. 151, pp. 149-153, 2017. https://doi.org/10.1016/j.epsr.2017.05.031
  6. L. Z. Lu Zhang, W. T. Wei Tang, J. L. Jun Liang, G. L. Gen Li, Y. C. Yongxiang Cai, T. Y. Tao Yan, "A medium voltage hybrid AC/DC distribution network and its economic evaluation," in 12th IET International Conference on AC and DC Power Transmission, 2016. https://doi.org/10.1049/cp.2016.0446
  7. L. F. Grisales-Noreña, O. D. Montoya, W. J. Gil-González, A.-J. Perea-Moreno, M.-A. Perea-Moreno, "A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors," Electronics, vol. 9, e2062, 2020. https://doi.org/10.3390/electronics9122062
  8. O. D. Montoya Giraldo, A. Arias-Londoño, A. Molina-Cabrera, "Branch Optimal Power Flow Model for DC Networks with Radial Structure: A Conic Relaxation," Tecnura, vol. 26, pp. 30-42, 2022. https://doi.org/10.14483/22487638.18635
  9. W. Gil-González, O. D. Montoya, C. Restrepo, J. C. Hernández, "Sensorless Adaptive Voltage Control for Classical DC-DC Converters Feeding Unknown Loads: A Generalized PI Passivity-Based Approach," Sensors, vol. 21, e6367, 2021. https://doi.org/10.3390/s21196367
  10. V. Monteiro, L. F. C. Monteiro, F. L. Franco, R. Mandrioli, M. Ricco, G. Grandi, J. L. Afonso, "The Role of Front-End AC/DC Converters in Hybrid AC/DC Smart Homes: Analysis and Experimental Validation," Electronics, vol. 10, e2601, 2021. https://doi.org/10.3390/electronics10212601
  11. B. S. Chew, Y. Xu, Q. Wu, "Voltage Balancing for Bipolar DC Distribution Grids: A Power Flow Based Binary Integer Multi-Objective Optimization Approach," IEEE Transactions on Power Systems, vol. 34, pp. 28-39, 2019. https://doi.org/10.1109/tpwrs.2018.2866817
  12. G. Van den Broeck, S. De Breucker, J. Beerten, J. Zwysen, M. Dalla Vecchia, J. Driesen, "Analysis of three-level converters with voltage balancing capability in bipolar DC distribution networks," in IEEE Second International Conference on DC Microgrids (ICDCM), 2017. https://doi.org/10.1109/icdcm.2017.8001052
  13. A. Garcés, O.-D. Montoya, "A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms," Journal of Control, Automation and Electrical Systems, vol. 30, pp. 794-801, 2019. https://doi.org/10.1007/s40313-019-00489-4
  14. L. Mackay, R. Guarnotta, A. Dimou, G. Morales-Espana, L. Ramirez-Elizondo, P. Bauer, "Optimal Power Flow for Unbalanced Bipolar DC Distribution Grids," IEEE Access, vol. 6, pp. 5199-5207, 2018. https://doi.org/10.1109/access.2018.2789522
  15. J.-O. Lee, Y.-S. Kim, S.-I. Moon, "Current Injection Power Flow Analysis and Optimal Generation Dispatch for Bipolar DC Microgrids," IEEE Transactions on Smart Grid, vol. 12, pp. 1918-1928, 2021. https://doi.org/10.1109/tsg.2020.3046733
  16. J. Kim, J. Cho, H. Kim, Y. Cho, H. Lee, "Power Flow Calculation Method of DC Distribution Network for Actual Power System," KEPCO Journal on Electric Power and Energy, vol. 6, pp. 419-425, 2020. https://doi.org/10.18770/KEPCO.2020.06.04.419
  17. O. D. Montoya, Á. Medina-Quesada, W. Gil-González, "Solving the Power Flow Problem in Bipolar DC Asymmetric Distribution Networks Using Broyden’s Method," Sensors, vol. 23, e6704, 2023.
  18. J.-O. Lee, Y.-S. Kim, J.-H. Jeon, "Generic power flow algorithm for bipolar DC microgrids based on Newton–Raphson method," International Journal of Electrical Power & Energy Systems, vol. 142, e108357, 2022.
  19. S. Sepúlveda-García, O. D. Montoya, A. Garcés, "A second-order conic approximation to solving the optimal power flow problem in bipolar DC networks while considering a high penetration of distributed energy resources," International Journal of Electrical Power & Energy Systems, vol. 155, e109516, 2024.
  20. C. Hernandez, W. Sánchez Huertas, V. Gómez, "Optimal Power Flow through Artificial Intelligence Techniques," Tecnura, vol. 25, pp. 150-170, 2021. https://doi.org/10.14483/22487638.18245
  21. O. D. Montoya, V. M. Garrido, W. Gil-Gonzalez, L. F. Grisales-Norena, "Power Flow Analysis in DC Grids: Two Alternative Numerical Methods," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, pp. 1865-1869, 2019. https://doi.org/10.1109/tcsii.2019.2891640
  22. O. D. Montoya, W. Gil-González, A. Garcés, "A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals," Electric Power Systems Research, vol. 211, e108264, 2022. https://doi.org/10.1016/j.ijepes.2020.106299
  23. A. Garcés, "On the Convergence of Newton’s Method in Power Flow Studies for DC Microgrids," IEEE Transactions on Power Systems, vol. 33, pp. 5770-5777, 2018. https://doi.org/0.1109/tpwrs.2018.2820430
  24. M. C. Herrera-Briñez, O. D. Montoya, L. Alvarado-Barrios, H. R. Chamorro, "The Equivalence between Successive Approximations and Matricial Load Flow Formulations," Applied Sciences, vol. 11, e2905, 2021. https://doi.org/10.3390/app11072905
  25. L. Paniagua, R. B. Prada, "Voltage stability assessment using equivalent Thevenin," in IEEE Thirty Fifth Central American and Panama Convention (CONCAPAN XXXV), 2015. https://doi.org/10.1109/concapan.2015.7428499
  26. O. D. Montoya, W. Gil-González, A. Garces, "Numerical methods for power flow analysis in DC networks: State of the art, methods and challenges," International Journal of Electrical Power & Energy Systems, vol. 123, e106299, 2020.
  27. J. W. Simpson-Porco, F. Dorfler, F. Bullo, "On Resistive Networks of Constant-Power Devices," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, pp. 811-815, 2015. https://doi.org/10.1109/tcsii.2015.2433537
  28. P. Huamaní Navarrete, "Programación de interfaz gráfica en APP Designer del MATLAB para representar la serie de Fourier en curso introductorio de telecomunicaciones," Scientia, vol. 23, pP. 199-213, 2023. https://doi.org/10.31381/scientia.v23i23.4592
  29. D. Murillo-Yarce, A. Garcés-Ruiz, A. Escobar-Mejía, "Passivity-Based Control for DC-Microgrids with Constant Power Terminals in Island Mode Operation," Revista Facultad de Ingeniería Universidad de Antioquia, pp. 32-39, 2018. https://doi.org/10.17533/udea.redin.n86a05

Downloads

Download data is not yet available.