B-Splines positivas usadas como mapeos en el cuantificador probabilístico
Resumen
Un Cuantificador Dither consiste en una señal externa denominada Dither que se añade a la señal de entrada antes de la cuantización para controlar las propiedades estadísticas del error de cuantización. En el marco conocido como Procesamiento Cuántico de Señales (QSP por sus siglas en inglés), se desarrolló un cuantificador equivalente denominado cuantificador probabilístico, el cual es capaz de generar una señal Dither con una distribución de probabilidad conjunta arbitraria. Este trabajo demuestra cómo las funciones B-spline positivas pueden utilizarse como mapeo en el cuantificador probabilístico y las ventajas matemáticas para realizar su análisis. Además, establecemos una relación entre el orden de la B-spline y la representación de los momentos condicionales del error. Los resultados experimentales muestran que el enfoque propuesto ofrece un rendimiento a la par que el cuantificador Dither y su implementación es más fácil.
Palabras clave
B-spline, cuantificador Dither, cuantificador probabilístico, momentos condicionales, procesamiento cuántico de señales
Citas
- R. M. Gray, D. L. Neuhoff, “Quantization,” IEEE Transactions Information Theory, vol. 44, no. 6, pp. 2325-2383, 1998. https://doi.org/10.1109/18.720541
- B. Widrow, I. Kollar, Quantization Noise: Roundoff Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge University Press, 2008. https://doi.org/10.1017/cbo9780511754661
- S. P. Lipshitz, R. A. Wannamaker, J. Vanderkooy, “Quantization and Dither: A theoretical survey,” Journal of the Audio Engineering Society, vol. 40, no. 5, pp. 355-375, 1992.
- E. Akyol, K. Rose, “Nonuniform Dithered Quantization,” in Data Compression Conference, 2009, pp. 435-435. https://doi.org/10.1109/dcc.2009.78
- E. Akyol, K. Rose, “On Constrained Randomized Quantization,” IEEE Transactions Signal Processing, vol. 61, no. 13, pp. 3291-3302, 2013. https://doi.org/10.1109/tsp.2013.2261296
- R. A. Wannamaker, S. P. Lipshitz, J. Vanderkooy, J. N. Wright, “A theory of nonsubtractive Dither,” IEEE Transactions Signal Processing, vol. 48, no. 2, pp. 499-516, 2000. https://doi.org/10.1109/78.823976
- R. A. Wannamaker, “The theory of Dithered quantization,” Doctoral Dissertation, University of Waterloo, Ontaria, Canada, 1997.
- L. Yue, P. Ganesan, B. S. Sathish, C. Manikandan, A. Niranjan, V. Elamaran, A. F. Hussein, “The importance of Dithering technique revisited with biomedical images-a survey,” IEEE Access, vol. 7, pp. 3627-3634, 2019. https://doi.org/10.1109/access.2018.2888503
- H. Pan, A. Abidi, “Spectral spurs due to quantization in nyquist adcs,” IEEE Transactions Circuits Systems I, vol. 51, no. 8, pp. 1422-1439, 2004. https://doi.org/10.1109/tcsi.2004.832755
- L. He, L. Jin, J. Yang, F. Lin, L. Yao, X. Jiang, “Self-Dithering technique for high-resolution sar adc design,” IEEE Transactions Circuits Systems II, vol. 62, no. 12, pp. 1124-1128, 2015. https://doi.org/10.1109/tcsii.2015.2468921
- T. Miki, N. Miura, H. Sonoda, K. Mizuta, M. Nagata, “A random interrupt Dithering sar technique for secure adc against reference-charge side-channel attack,” IEEE Transactions Circuits Systems II, vol. 67, no. 1, pp. 14-18, 2020. https://doi.org/10.1109/tcsii.2019.2901534
- H. Mo, X. Tan, M. P. Kennedy, “Maximizing the fundamental period of a Dithered digital delta-sigma modulator with constant input,” in Proceeddings IEEE ICECS, 2016, pp. 472-475. https://doi.org/10.1109/icecs.2016.7841241
- H. Mo, M. P. Kennedy, “Masked Dithering of MASH Digital Delta-Sigma Modulators With Constant Inputs Using Multiple Linear Feedback Shift Registers,” IEEE Transactions Circuits Systems I, vol. 64, no. 6, pp. 1390-1399, 2017. https://doi.org/10.1109/tcsi.2017.2670365
- Y. Liao, X. Fan, Z. Hua, “Influence of lfsr Dither on the periods of a mash digital delta–sigma modulator,” IEEE Transactions Circuits Systems II, vol. 66, no. 1, pp. 66-70, 2019. https://doi.org/10.1109/tcsii.2018.2828600
- M. S. Fu, O. C. Au, “Data hiding in ordered Dithered halftone images,” Circuits Systems Signal Process, vol. 20, pp. 209-232, 2001. https://doi.org/10.1007/bf01201139
- J. Rapp, R. M. A. Dawson, V. K. Goyal, “Improving Lidar Depth Resolution with Dither,” in Proceeddings IEEE ICIP, 2018, pp. 1553-1557. https://doi.org/10.1109/icip.2018.8451528
- E. T. Mbitu, S.-C. Chen, “Designing limit-cycle suppressor using Dithering and dual-input describing function methods,” Mathematics, vol. 8, no. 11, e1978, 2020. https://doi.org/10.3390/math8111978
- V. K. Goyal, J. Kovacevic, J. A. Kelner, “Quantized Frame Expan-´ sions with Erasures,” Applied and Computational Harmonic Analysis, vol. 10, no. 3, pp. 203-233, 2001. https://doi.org/10.1006/acha.2000.0340
- S. Rangan, V. K. Goyal, “Recursive consistent estimation with bounded noise,” IEEE Transaction Information Theory, vol. 47, no. 1, pp. 457-464, 2001. https://doi.org/10.1109/18.904562
- B. G. Bodmann, S. P. Lipshitz, “Randomly Dithered quantization and sigma–delta noise shaping for finite frames,” Applied and Computational Harmonic Analysis, vol. 25, no. 3, pp. 367-380, 2008. https://doi.org/10.1016/j.acha.2007.12.003
- P. T. Boufounos, “Universal Rate-Efficient Scalar Quantization,” IEEE Transactions Information Theory, vol. 58, no. 3, pp. 1861-1872, 2012. https://doi.org/10.1109/tit.2011.2173899
- C. Xu, V. Schellekens, L. Jacques, “Taking the Edge off Quantization: Projected Back Projection in Dithered Compressive Sensing,” in Proceeddings IEEE SSP, 2018, pp. 203-207. https://doi.org/10.1109/ssp.2018.8450784
- L. Jacques, V. Cambareri, “Time for Dithering: fast and quantized random embeddings via the restricted isometry property,” Information and Inference: A Journal of the IMA, vol. 6, no. 4, pp. 441-476, 2017. https://doi.org/10.1093/imaiai/iax004
- A. Parada-Mayorga, D. L. Lau, J. H. Giraldo, G. R. Arce, “Blue-Noise sampling on graphs,” IEEE Transactions Signal Information Processing, vol. 5, no. 3, pp. 554-569, 2019. https://doi.org/10.1109/tsipn.2019.2922852
- A. Sanyal, N. Sun, “A simple and efficient Dithering method for vector quantizer based mismatch-shaped DACs,” in Proceedings IEEE ISCAS, 2012, pp. 528-531. https://doi.org/10.1109/iscas.2012.6272082
- N. West, G. Scheets, “Increasing the resolution of a uniform quantizer using a deterministic Dithering signal,” in Proceedings IEEE AUTOTESTCON, 2012, pp. 54-57. https://doi.org/10.1109/autest.2012.6334521
- R. Hadad, U. Erez, “Dithered Quantization via Orthogonal Transformations,” IEEE Transactions Signal Processing, vol. 64, no. 22, pp. 5887-5900, 2016. https://doi.org/10.1109/tsp.2016.2599482
- Y. C. Eldar, “Quantum signal processing,” Doctora Dissertation, Massachusetts Institute of Technology, 2001.
- M. Unser, T. Blu, “Wavelet theory demystified,” IEEE Transactions Signal Processing, vol. 51, no. 2, pp. 470-483, 2003. https://doi.org/10.1109/tsp.2002.807000
- M. Unser, A. Aldroubi, M. Eden, “A family of polynomial spline wavelet transforms,” Signal Processing, vol. 30, no. 2, pp. 141-162, 1993. https://doi.org/10.1016/0165-1684(93)90144-y
- G. Makkena, M. B. Srinivas, “Nonlinear sequence transformation based continuous-time wavelet filter approximation,” Circuits, Systems, and Signal Processing, vol. 37, no. 3, p. 965-983, 2018. https://doi.org/10.1007/s00034-017-0591-9
- P. Noras, N. Aghazadeh, “Directional schemes for edge detection based on b-spline wavelets,” Circuits, Systems, and Signal Processing, vol. 37, pp. 3973-3994, 2018. https://doi.org/10.1007/s00034-018-0753-4
- M. A. Unser, “Ten good reasons for using spline wavelets,” in Wavelet Applications in Signal and Image Processing V, A. Aldroubi, A. F. Laine, M. A. Unser, Eds., vol. 3169, International Society for Optics and Photonics. SPIE, 1997, pp. 422-431. https://doi.org/10.1117/12.292801
- M. Unser, T. Blu, “Fractional splines and wavelets,” SIAM Review, vol. 42, no. 1, pp. 43-67, 2000. https://doi.org/10.1137/s0036144598349435
- L. Devroye, Non-Uniform Random Variate Generation, Springer New York, 1986. https://doi.org/10.1007/978-1-4613-8643-8