Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

B-Splines positivas usadas como mapeos en el cuantificador probabilístico

Resumen

Un Cuantificador Dither consiste en una señal externa denominada Dither que se añade a la señal de entrada antes de la cuantización para controlar las propiedades estadísticas del error de cuantización. En el marco conocido como Procesamiento Cuántico de Señales (QSP por sus siglas en inglés), se desarrolló un cuantificador equivalente denominado cuantificador probabilístico, el cual es capaz de generar una señal Dither con una distribución de probabilidad conjunta arbitraria. Este trabajo demuestra cómo las funciones B-spline positivas pueden utilizarse como mapeo en el cuantificador probabilístico y las ventajas matemáticas para realizar su análisis. Además, establecemos una relación entre el orden de la B-spline y la representación de los momentos condicionales del error. Los resultados experimentales muestran que el enfoque propuesto ofrece un rendimiento a la par que el cuantificador Dither y su implementación es más fácil.

Palabras clave

B-spline, cuantificador Dither, cuantificador probabilístico, momentos condicionales, procesamiento cuántico de señales

PDF (English)

Citas

  1. R. M. Gray, D. L. Neuhoff, “Quantization,” IEEE Transactions Information Theory, vol. 44, no. 6, pp. 2325-2383, 1998. https://doi.org/10.1109/18.720541
  2. B. Widrow, I. Kollar, Quantization Noise: Roundoff Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge University Press, 2008. https://doi.org/10.1017/cbo9780511754661
  3. S. P. Lipshitz, R. A. Wannamaker, J. Vanderkooy, “Quantization and Dither: A theoretical survey,” Journal of the Audio Engineering Society, vol. 40, no. 5, pp. 355-375, 1992.
  4. E. Akyol, K. Rose, “Nonuniform Dithered Quantization,” in Data Compression Conference, 2009, pp. 435-435. https://doi.org/10.1109/dcc.2009.78
  5. E. Akyol, K. Rose, “On Constrained Randomized Quantization,” IEEE Transactions Signal Processing, vol. 61, no. 13, pp. 3291-3302, 2013. https://doi.org/10.1109/tsp.2013.2261296
  6. R. A. Wannamaker, S. P. Lipshitz, J. Vanderkooy, J. N. Wright, “A theory of nonsubtractive Dither,” IEEE Transactions Signal Processing, vol. 48, no. 2, pp. 499-516, 2000. https://doi.org/10.1109/78.823976
  7. R. A. Wannamaker, “The theory of Dithered quantization,” Doctoral Dissertation, University of Waterloo, Ontaria, Canada, 1997.
  8. L. Yue, P. Ganesan, B. S. Sathish, C. Manikandan, A. Niranjan, V. Elamaran, A. F. Hussein, “The importance of Dithering technique revisited with biomedical images-a survey,” IEEE Access, vol. 7, pp. 3627-3634, 2019. https://doi.org/10.1109/access.2018.2888503
  9. H. Pan, A. Abidi, “Spectral spurs due to quantization in nyquist adcs,” IEEE Transactions Circuits Systems I, vol. 51, no. 8, pp. 1422-1439, 2004. https://doi.org/10.1109/tcsi.2004.832755
  10. L. He, L. Jin, J. Yang, F. Lin, L. Yao, X. Jiang, “Self-Dithering technique for high-resolution sar adc design,” IEEE Transactions Circuits Systems II, vol. 62, no. 12, pp. 1124-1128, 2015. https://doi.org/10.1109/tcsii.2015.2468921
  11. T. Miki, N. Miura, H. Sonoda, K. Mizuta, M. Nagata, “A random interrupt Dithering sar technique for secure adc against reference-charge side-channel attack,” IEEE Transactions Circuits Systems II, vol. 67, no. 1, pp. 14-18, 2020. https://doi.org/10.1109/tcsii.2019.2901534
  12. H. Mo, X. Tan, M. P. Kennedy, “Maximizing the fundamental period of a Dithered digital delta-sigma modulator with constant input,” in Proceeddings IEEE ICECS, 2016, pp. 472-475. https://doi.org/10.1109/icecs.2016.7841241
  13. H. Mo, M. P. Kennedy, “Masked Dithering of MASH Digital Delta-Sigma Modulators With Constant Inputs Using Multiple Linear Feedback Shift Registers,” IEEE Transactions Circuits Systems I, vol. 64, no. 6, pp. 1390-1399, 2017. https://doi.org/10.1109/tcsi.2017.2670365
  14. Y. Liao, X. Fan, Z. Hua, “Influence of lfsr Dither on the periods of a mash digital delta–sigma modulator,” IEEE Transactions Circuits Systems II, vol. 66, no. 1, pp. 66-70, 2019. https://doi.org/10.1109/tcsii.2018.2828600
  15. M. S. Fu, O. C. Au, “Data hiding in ordered Dithered halftone images,” Circuits Systems Signal Process, vol. 20, pp. 209-232, 2001. https://doi.org/10.1007/bf01201139
  16. J. Rapp, R. M. A. Dawson, V. K. Goyal, “Improving Lidar Depth Resolution with Dither,” in Proceeddings IEEE ICIP, 2018, pp. 1553-1557. https://doi.org/10.1109/icip.2018.8451528
  17. E. T. Mbitu, S.-C. Chen, “Designing limit-cycle suppressor using Dithering and dual-input describing function methods,” Mathematics, vol. 8, no. 11, e1978, 2020. https://doi.org/10.3390/math8111978
  18. V. K. Goyal, J. Kovacevic, J. A. Kelner, “Quantized Frame Expan-´ sions with Erasures,” Applied and Computational Harmonic Analysis, vol. 10, no. 3, pp. 203-233, 2001. https://doi.org/10.1006/acha.2000.0340
  19. S. Rangan, V. K. Goyal, “Recursive consistent estimation with bounded noise,” IEEE Transaction Information Theory, vol. 47, no. 1, pp. 457-464, 2001. https://doi.org/10.1109/18.904562
  20. B. G. Bodmann, S. P. Lipshitz, “Randomly Dithered quantization and sigma–delta noise shaping for finite frames,” Applied and Computational Harmonic Analysis, vol. 25, no. 3, pp. 367-380, 2008. https://doi.org/10.1016/j.acha.2007.12.003
  21. P. T. Boufounos, “Universal Rate-Efficient Scalar Quantization,” IEEE Transactions Information Theory, vol. 58, no. 3, pp. 1861-1872, 2012. https://doi.org/10.1109/tit.2011.2173899
  22. C. Xu, V. Schellekens, L. Jacques, “Taking the Edge off Quantization: Projected Back Projection in Dithered Compressive Sensing,” in Proceeddings IEEE SSP, 2018, pp. 203-207. https://doi.org/10.1109/ssp.2018.8450784
  23. L. Jacques, V. Cambareri, “Time for Dithering: fast and quantized random embeddings via the restricted isometry property,” Information and Inference: A Journal of the IMA, vol. 6, no. 4, pp. 441-476, 2017. https://doi.org/10.1093/imaiai/iax004
  24. A. Parada-Mayorga, D. L. Lau, J. H. Giraldo, G. R. Arce, “Blue-Noise sampling on graphs,” IEEE Transactions Signal Information Processing, vol. 5, no. 3, pp. 554-569, 2019. https://doi.org/10.1109/tsipn.2019.2922852
  25. A. Sanyal, N. Sun, “A simple and efficient Dithering method for vector quantizer based mismatch-shaped DACs,” in Proceedings IEEE ISCAS, 2012, pp. 528-531. https://doi.org/10.1109/iscas.2012.6272082
  26. N. West, G. Scheets, “Increasing the resolution of a uniform quantizer using a deterministic Dithering signal,” in Proceedings IEEE AUTOTESTCON, 2012, pp. 54-57. https://doi.org/10.1109/autest.2012.6334521
  27. R. Hadad, U. Erez, “Dithered Quantization via Orthogonal Transformations,” IEEE Transactions Signal Processing, vol. 64, no. 22, pp. 5887-5900, 2016. https://doi.org/10.1109/tsp.2016.2599482
  28. Y. C. Eldar, “Quantum signal processing,” Doctora Dissertation, Massachusetts Institute of Technology, 2001.
  29. M. Unser, T. Blu, “Wavelet theory demystified,” IEEE Transactions Signal Processing, vol. 51, no. 2, pp. 470-483, 2003. https://doi.org/10.1109/tsp.2002.807000
  30. M. Unser, A. Aldroubi, M. Eden, “A family of polynomial spline wavelet transforms,” Signal Processing, vol. 30, no. 2, pp. 141-162, 1993. https://doi.org/10.1016/0165-1684(93)90144-y
  31. G. Makkena, M. B. Srinivas, “Nonlinear sequence transformation based continuous-time wavelet filter approximation,” Circuits, Systems, and Signal Processing, vol. 37, no. 3, p. 965-983, 2018. https://doi.org/10.1007/s00034-017-0591-9
  32. P. Noras, N. Aghazadeh, “Directional schemes for edge detection based on b-spline wavelets,” Circuits, Systems, and Signal Processing, vol. 37, pp. 3973-3994, 2018. https://doi.org/10.1007/s00034-018-0753-4
  33. M. A. Unser, “Ten good reasons for using spline wavelets,” in Wavelet Applications in Signal and Image Processing V, A. Aldroubi, A. F. Laine, M. A. Unser, Eds., vol. 3169, International Society for Optics and Photonics. SPIE, 1997, pp. 422-431. https://doi.org/10.1117/12.292801
  34. M. Unser, T. Blu, “Fractional splines and wavelets,” SIAM Review, vol. 42, no. 1, pp. 43-67, 2000. https://doi.org/10.1137/s0036144598349435
  35. L. Devroye, Non-Uniform Random Variate Generation, Springer New York, 1986. https://doi.org/10.1007/978-1-4613-8643-8

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede {advancedSearchLink} para este artículo.