Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Estudio comparativo de algoritmos inspirados en el cuco para problemas de optimización continua a gran escala

Resumen

Dos comportamientos distintivos del pájaro cuco han inspirado varios algoritmos metaheurísticos para resolver problemas de optimización continua. Además del conocido comportamiento de reproducción parasitaria que dio origen a diversos algoritmos de búsqueda cuco (CS por sus siglas en inglés), otro comportamiento relacionado con sus agrupaciones y la forma en que localizan las fuentes de alimento ha dado lugar al algoritmo COA. Como resultado, existen diferentes variantes para resolver problemas de optimización continua; sin embargo, es necesario definir cuál es el más adecuado para resolver un problema bajo requerimientos específicos. En este trabajo se realiza una comparación entre seis de estos algoritmos incluido CS+LEM (propuesto en este artículo), una hibridación del algoritmo CS con modelos evolutivos que aprenden (LEM por sus siglas en inglés) usando un enfoque conocido como “metaheurística mejorada por inteligencia artificial”. Se realizaron tres evaluaciones utilizando un conjunto de 61 funciones de prueba continuas: 1) el valor óptimo alcanzado con un tiempo fijo de ejecución; 2) el número de evaluaciones de la función objetivo necesarias para alcanzar el óptimo global; 3) el valor óptimo alcanzado con un número fijo de evaluaciones de la función objetivo. CS+LEM presenta los mejores resultados en la evaluación 1, mientras que COA presenta los mejores resultados en las evaluaciones 2 y 3. Los resultados se analizaron mediante las pruebas estadísticas no paramétricas de Friedman y Wilcoxon.

Palabras clave

algoritmo de búsqueda del cuco, inteligencia artificial, metaheurísticas, optimización, problemas continuos a gran escala

PDF (English)

Biografía del autor/a

Carlos-Alberto Cobos-Lozada

Profesor de Planta Titular Tiempo Completo

Departamento de Sistemas

Facultad de Ingeniería Electrónica y Telecomunicaciones

Universidad del Cauca


Citas

  1. L. Velasco, H. Guerrero, A. Hospitaler, “A Literature Review and Critical Analysis of Metaheuristics Recently Developed,” Arch. Comput. Methods Eng., 2023. https://doi.org/10.1007/s11831-023-09975-0
  2. R. R. Abo-Alsabeh, A. Salhi, “The Genetic Algorithm: A study survey,” Iraqi J. Sci., vol. 63, no. 3, pp. 1215-1231, 2022. https://doi.org/10.24996/ijs.2022.63.3.27
  3. F. Neri, C. Cotta, “Memetic algorithms and memetic computing optimization: A literature review,” Swarm Evol. Comput., vol. 2, pp. 1-14, 2012. https://doi.org/10.1016/j.swevo.2011.11.003
  4. V. K. Prajapati, M. Jain, L. Chouhan, “Tabu Search Algorithm (TSA): A Comprehensive Survey,” in Proceedings of 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things, 2020, pp. 222–229. https://doi.org/10.1109/ICETCE48199.2020.9091743
  5. N. Nayar, S. Gautam, P. Singh, G. Mehta, “Ant Colony Optimization: A Review of Literature and Application in Feature Selection,” in Lecture Notes in Networks and Systems, 2021, pp. 285-297. https://doi.org/10.1007/978-981-33-4305-4_22
  6. A. G. Gad, “Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review,” Arch. Comput. Methods Eng., vol. 29, no. 5, pp. 2531-2561, 2022. https://doi.org/10.1007/s11831-021-09694-4
  7. I. Sharma, V. Kumar, S. Sharma, “A Comprehensive Survey on Grey Wolf Optimization,” Recent Adv. Comput. Sci. Commun., vol. 15, no. 3, pp. 323-333, 2022. https://doi.org/10.2174/2666255813999201007165454
  8. J. Li, X. Wei, B. Li, Z. Zeng, “A survey on firefly algorithms,” Neurocomputing, vol. 500, pp. 662-678, 2022. https://doi.org/10.1016/j.neucom.2022.05.100
  9. D. Karaboga, B. Akay, “A comparative study of Artificial Bee Colony algorithm,” Appl. Math. Comput., vol. 214, no. 1, pp. 108-132, 2009. https://doi.org/10.1016/j.amc.2009.03.090
  10. M. F. Ahmad, N. A. M. Isa, W. H. Lim, K. M. Ang, “Differential evolution: A recent review based on state-of-the-art works,” Alexandria Eng. J., vol. 61, no. 5, pp. 3831-3872, 2022. https://doi.org/10.1016/j.aej.2021.09.013
  11. F. Qin, A. M. Zain, K.-Q. Zhou, “Harmony search algorithm and related variants: A systematic review,” Swarm Evol. Comput., vol. 74, 2022. https://doi.org/10.1016/j.swevo.2022.101126
  12. E. Ruano-Daza, C. Cobos, J. Torres-Jimenez, M. Mendoza, A. Paz, “A multiobjective bilevel approach based on global-best harmony search for defining optimal routes and frequencies for bus rapid transit systems,” Appl. Soft Comput. J., vol. 67, pp. 567-583, 2018. https://doi.org/10.1016/j.asoc.2018.03.026
  13. S. Salhi, J. Thompson, “An overview of heuristics and metaheuristics,” in The Palgrave Handbook of Operations Research, 2022, pp. 353-403. https://doi.org/10.1007/978-3-030-96935-6_11
  14. X.-S. Yang, S. Deb, “Cuckoo Search via Lévy flights,” in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), 2009, pp. 210-214. https://doi.org/10.1109/NABIC.2009.5393690
  15. K. Safdar, K. N. Abdul Rani, H. A. Rahim, S. J. Rosli, M. A. Jamlos, “A Review on Research Trends in using Cuckoo Search Algorithm: Applications and Open Research Challenges,” Prz. Elektrotechniczny, vol. 1, no. 5, pp. 18-24, 2023. https://doi.org/10.15199/48.2023.05.04
  16. E. Valian, S. Mohanna, S. Tavakoli, “Improved Cuckoo Search Algorithm for Feed forward Neural Network Training,” Int. J. Artif. Intell. Appl., vol. 2, no. 3, pp. 36-43, 2011. https://doi.org/10.5121/ijaia.2011.2304
  17. S. Walton, O. Hassan, K. Morgan, M. R. Brown, “Modified cuckoo search: A new gradient free optimisation algorithm,” Chaos, Solitons and Fractals, vol. 44, no. 9, pp. 710-718, 2011. https://doi.org/101016/jchaos201106004
  18. M. Tuba, M. Subotic, N. Stanarevic, “Modified Cuckoo Search Algorithm for Unconstrained Optimization Problems,” in Proc. 5th Eur. Conf. Eur. Comput. Conf., pp. 263-268, 2011. http://www.wseas.us/e-library/conferences/2011/Paris/ECC/ECC-43.pdf
  19. R. Rajabioun, “Cuckoo Optimization Algorithm,” Appl. Soft Comput., vol. 11, no. 8, pp. 5508-5518, 2011. https://doi.org/10.1016/j.asoc.2011.05.008
  20. J. Li, Q. An, H. Lei, Q. Deng, G.-G. Wang, “Survey of Lévy Flight-Based Metaheuristics for Optimization,” Mathematics, vol. 10, no. 15, e2785, 2022. https://doi.org/10.3390/math10152785
  21. R. S. Michalski, “Learnable evolution model: evolutionary processes guided by machine learning,” Mach. Learn., vol. 38, no. 1, pp. 9-40, 2000. https://doi.org/10.1023/a:1007677805582
  22. A. L. da Costa Oliveira, A. Britto, R. Gusmão, “Machine learning enhancing metaheuristics: a systematic review,” Soft Comput., 2023. https://doi.org/10.1007/s00500-023-08886-3
  23. C. Cobos, D. Estupiñán, J. Pérez, “GHS + LEM: Global-best Harmony Search using learnable evolution models,” Appl. Math. Comput., vol. 218, no. 6, pp. 2558-2578, 2011. https://doi.org/10.1016/j.amc.2011.07.073
  24. P. N. Suganthan et al., “Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization,” Singapore, 2005. http://www.cmap.polytechnique.fr/~nikolaus.hansen/Tech-Report-May-30-05.pdf
  25. K. Tang et al., “Benchmark functions for the CEC’2008 special session and competition on large scale global optimization,” in IEEE World Congress on Computational Intelligence, Rio de Janeiro, Brazil: IEEE, 2008, pp. 1-18. http://sci2s.ugr.es/programacion/workshop/Tech.Report.CEC2008.LSGO.pdf
  26. T. Ke, L. Xiaodong, S. P. N., Y. Zhenyu, W. Thomas, “Benchmark Functions for the CEC’2010 Special Session and Competition on Large-Scale Global Optimization,” Shanghai, China, 2010. http://goanna.cs.rmit.edu.au/~xiaodong/cec13-lsgo/competition/cec2013-lsgo-benchmark-tech-report.pdf
  27. M. Molga, C. Smutnicki, “Test functions for optimization needs,” Test functions for optimization needs, pp. 1-43, 2005. https://robertmarks.org/Classes/ENGR5358/Papers/functions.pdf
  28. D. H. Wolpert, W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67-82, 1997. https://doi.org/10.1109/4235.585893

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.