Aplicaciones y retos del sensado remoto hiperespectral en la geología colombiana
Resumen
El Sensado Remoto (SR) es una técnica que permite captar información de una escena sin entrar en contacto físico con ella, mediante el empleo de sensores ubicados, principalmente, en plataformas aéreas, los cuales captan información en diferentes rangos del espectro electromagnético, incluyendo el visible (VIS), el cercano al infrarrojo (NIR) y el de ondas cortas del infrarrojo (SWIR). Teniendo en cuenta que cada material presente en una escena tiene características espectrales diferentes, es posible, a través del análisis de las firmas espectrales, realizar su identificación o clasificación mediante algoritmos. Las Imágenes Hiperespectrales (HSI) captadas por sensores remotos en cientos de bandas espectrales son de importancia en áreas como la geología, la mineralogía, la agronomía y la ecología, entre otras, sin embargo, el gran volumen de literatura dispersa en diferentes líneas (SR, HSI y geología) dificulta su acceso y análisis. Este trabajo presenta un compendio de conceptos, principios básicos y fundamentos matemáticos del SR, e incluye investigaciones y tendencias de él, destacando su desarrollo y sus retos en Colombia, y un caso de uso de HSI en la geología colombiana, cuyas evaluaciones muestran la capacidad de detección del sensor hiperespectral Hyperion, ubicado en el satélite EO-1, para el mapeo geológico en un sitio de prueba al noroccidente del municipio de Girón, departamento de Santander. Los resultados de las evaluaciones son satisfactorios, espectralmente, el coeficiente de correlación fue alto y la relación espacial entre la firma espectral obtenida y la geología conocida del área fue aceptable y correspondió al análisis de Difracción de Rayos X (DRX) realizado a muestras tomadas del área de estudio.
Palabras clave
Sensado Remoto, Imágenes Hiperespectrales, Firma espectral, Geología, Algoritmos de Detección de Objetivos.
Citas
- J. A. Richards y X. Jia, Remote Sensing Digital Image Analysis, New York, Berlin: Springer-Verlag, 2006.
- N. M. Nasrabadi, “Hyperspectral Target Detection”, IEEE Signal Processing Magazine, vol. 31, nº 1, pp. 34-44, 2014.
- W.-K. Ma, J. M. Bioucas-Dias, J. Chanussot y P. Gader, “Signal and image processing in hyperspectral remote sensing”, IEEE Signal Processing Magazine, vol. 31, nº 1, pp. 22-23, 2014.
- D. Manolakis, D. Marden y G. A.-. Shaw, “Hyperspectral Image Processing for Automatic Target Detection Applications”, Lincoln Laboratory Journal, vol. 14, nº 1, pp. 79-116, 2003.
- L. Homolová, Z. Malenovský, J. G. Clevers y G. Garcia, “Review of optical-based remote sensing for plant trait mapping”, Ecological Complexity, vol. 15, nº 1, pp. 1-16, 2013.
- E. Bastidas y J.A. Carbonell, “Caracterización espectral y mineralógica de los suelos del valle del río Cauca por espectroscopía visible e infrarroja (400-2.500 nm)”, Agronomía Colombiana, vol. 28, nº 2, pp. 291-301, 2010.
- D. F. Correa y E. Posada, “The social and economic benefits of Remote Sensing and Earth Observation Satellite Systems”, Tecnologías geoespaciales al servicio del desarrollo territorial, vol. 49, pp. 15-26, 2013.
- M. Zhang, Z. Qin, X. Liu y S. L. Ustin, “Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing”, International Journal of Applied Earth Observation and Geoinformation, vol. 4, nº 4, p. 295–310, 2003.
- S. M. Arafat, M. A. Aboelghar y E. F. Ahmed, “Crop Discrimination Using Field Hyper Spectral Remotely Sensed Data”, Advances in Remote Sensing, vol. 2, pp. 63-70, 2013.
- T. H. Kurz, S. J. Buckley y J. A. Howell, “Close range hyperspectral imaging integrated with terrestrial lidar scanning applied to rock characterization at centimetre scale”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 39, nº 5, pp. 417-422, 2012.
- USGS. GEOLOGICAL SURVEY, “http://landsat.usgs.gov/index.php”,U.S. GEOLOGICAL SURVEY, 07-05-2014. [En línea]. Disponible: http://landsat.usgs.gov/-band_designations_landsat_satellites.php.
- Earth Observing 1, EO-1, “Earth Observing 1 (EO-1) / Sensor Hyperion”, 13-12-2011. [En línea]. Disponible: http://eo1.usgs.gov/sensors/hyperion. [Último acceso: 06-08-2014].
- Digital Globe, 07-05-2014. [En línea]. Disponible: http://www.digitalglobe.com/es/about-us/content-collection.
- G. A. Shaw y H.-H. Burker, “Spectral Imaging for Remote Sensing”, Lincoln Laboratory Journal, vol. 14, nº 1, pp. 3-28, 2003.
- J. B. Campbell, Introduction to Remote Sensing, Edition Seven, New York: Guilford Press, 2007.
- F. Kruse, “Advances in Hyperspectral Remote Sensing for Geologic Mapping and Exploration”, Proceedings 9th Australasian Remote Sensing Conference, Sydney, Australia, 1998.
- M. Labrador García, J. A. Évora Brondo y M. A. Pérez, Satélites de Teledetección para la Gestión del Territorio, Canarias, España: Consejería de Agricultura, Ganadería, Pesca y Aguas del Gobierno de Canaria, 2012.
- A. C. Watts, V. G. Ambrosia y E. A. Hinkley, “Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use”, Remote Sensing, vol. 4, nº 1, pp. 1671-1692, 2012.
- C. Chen, Remote sensing: models and methods for image processing, 3ra ed., New York, FL: Crc Press Taylor and Francis Group, 2006.
- F. Ritchin, After Photography, New York: W. W. Norton & Company, 2008.
- W. C. Van Den Hoonaard, Map Wordlsa History of Women in Cartography, Ontario, Canada: Wilfrid Laurier University Press, 2013.
- NASA, “earthobservatory.nasa.gov/-Features/RemoteSensing/”, 24 10 2014. [En línea]. Disponible: http://earthobservatory.nasa.gov/Features/RemoteSensing/remote.php.
- C. Pohl y J. L. Van Genderen, “Multisensor image fusion in remote sensing: concepts, methods and applications”, International Journal of Remote Sensing, vol. 19, nº5,pp. 823-854, 1998.
- IGAC, “Informe 2012-2013 Instituto Geográfico Agustin Codazzi, IGAC”, Oficina de Difusión y Mercadeo de información, IGAC, Bogotá, 2013.
- E. Adam, O. Mutanga y D. Rugege, “Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review”, Wetlands Ecology and Management, vol. 18, nº 3, pp. 281-296, 2010.
- T. V. King y R. N. Clark, Verification of Remotely Sensed Data, in Remote Sensing for Site Characterization, Berlin: Springer, pp. 59-61, 2000.
- H. Kwon y N. M. Nasrabadi, “A comparative analysis of kernel subspace target detectors for hyperspectral imagery”, EURASIP Journal on Advances Signal Process, Article ID 29250, 13 pages, 2007.
- A. M. Baldridge, S. J. Hook, C. I. Grove y G. Rivera, “The ASTER spectral library version 2.0”, Remote Sensing of Environment, vol. 113, nº 4, pp. 711-715, 2009.
- U.S. Geological Survey (USGS), “U.S. Geological Survey (USGS) Libraries Program” 30-10-2014. [En línea]. Disponible: http://library.usgs.gov/.
- J. W. Salisbury, L. S. Walter, N. Vergo y D. M. D’Aria, Infrared (2.1-25 micrometers) Spectra of Minerals: Johns Hopkins University, Maryland: The Johns Hopkins University Press, 1991.
- S. Hook, C. Grove y E. Paylor, “Laboratory reflectance spectra of 160 minerals, 0.4 to 2.5 Micrometers: JPL”, JPL Publication, pp. 152-153, 1992.
- R. A. Schowengerdt, Remote sensing: models and methods for image processing (3rd ed.), Burlington. USA: Academic Press, 2007.
- M. K. Griffin, S. M. Hsu, H.-h. K. Burke, S. M. Orloff y C. A. Upham, “Examples of EO-1 Hyperion Data Analysis”, Lincoln Laboratory Journal, vol. 15, nº 2, pp. 271-298, 2005.
- U.S. Geological Survey (USGS), Hyperion Level 1G (L1GST) Product Output Files Data Format Control Book (DFCB), USGS, Sioux Falls, South Dakota, USA, Disponible: https://eo1.usgs.gov/documents/Hyperion_L1G_EO1-DFCB.v.1.pdf. 2006.
- NASA-Stuart Frye, “GeoBPMS”, 14-04-2015. [En línea]. Disponible: http://eo1.gsfc.nasa.gov/new/sensorWebExp/index.html.
- J. M. Royero y J. Clavijo, Mapa Geológico Generalizado del Departamento de Santander, Bogotá: Ingeominas, 2001.
- B. Datt, T. R. McVicar, T. G. Van Niel, D. L. Jupp y J. S. Pearlman, “Preprocessing EO-1 Hyperion Hyperspectral Data to Support the Application of Agricultural Indexes,” IEEE Transactions On Geoscience And Remote Sensing, vol. 41, nº 6, pp. 1246-1259, 2003.
- Y. Smara, Z. Hamadache y S. Chouaf, “Preprocessing EO-1 Hyperion hyperspectral data applied to forests and vegetation classification”, de ForestSAT conference 2014, Riva del Garda, Italia, 2014.
- Exelis, Inc, Atmospheric Correction Module: QUAC and FLAASH, 2009. [En línea]. Disponible: https://www.exelisvis.com/portals/0/pdfs/envi/Flaash_Module.pdf.
- F. A. Kruse, A. B. Lefkoff y J. W. Boardman, “The spectral image processing system (SIPS) interactive visualization and analysis of imaging spectrometer data”, Remote Sensing Environmental, vol. 44, nº 2, pp. 145-163, 1993.
- F. van der Meer, “The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery”, International Journal of Applied Earth Observation and Geoinformation, vol. 8, nº 1, pp. 3-17, 2006.
- M. Mounkaila, Spectral and Mineralogical Properties of Potential Dust Sources on a Transect from the Bodélé Depression (central Sahara) to the Lake Chad in the Sahel, Vol. 78, Univ. Hohenheim, 2006.
- A. Chudnovsky, A. Kostinski, L. Herrmann, I. Koren, G. Nutesku y E. Ben-Dor, “Hyperspectral space borne imaging of dustladen flows: Anatomy of Saharan dust storm from the Bodélé Depression”, Remote Sensing of Environment, vol. 115, nº 1, pp. 1013-1024, 2011.
- J. M. Nascimento y J. M. Bioucas, “Vertex Component Analysis: A Fast Algorithm to Unmix Hyperspectral Data”, IEEE Transactions On Geoscience And Remote Sensing, vol. 43, nº 4, pp. 898-910, 2005.
- J. Boardman, F. Kruse y R. Green, “Mapping target signatures via partial unmixing of AVIRIS data”, Fifth JPL Airborne Earth Science Workshop, vol. 95, nº 1, pp. 23-26, 1995.
- A. J. Jerri, “The Shannon sampling theorem; Its various extensions and applications: A tutorial review”, Proceedings of the IEEE, vol. 65, nº 11, pp. 1565-1596, 1977.
- A. Ramirez, H. Arguello, G. R. Arce y B. M. Sadler, “Spectral Image Classification from Optimal Code-Aperture Compressive Measurements”, IEEE Transactions on Geoscience and Remote Sensing, vol. 52, nº 6, pp. 3299-3309, 2014.
- D. F. Galvis, Y. H. Mejía y H. Arguello, “Efficient reconstruction of Raman spectroscopy imaging based on compressive sensing”, Dyna, vol. 81, nº 188, pp. 116-124, 2014.
- D. Brady, Optical Imaging and Spectroscopy, Durham, North Carolina, USA:Wyley, 2009.
- S. Gottesman y E. Fenimore, “New family of binary arrays for coded aperture imaging”, Applied Optics, vol. 28, nº 20, pp. 4344–4352, 1989.
- H. Arguello, H. Rueda, Y. Wu, W. Prather y G. Arce, “Higher-order computational model for coded aperture spectral imaging”, Applied Optics, vol. 56, nº 10, pp. D12–D21, 2013.
- G. Arce y H. Arguello, “Rank minimization code aperture design for spectrally”, IEEE Trans. image Process, vol. 22, nº 3, pp. 941–954, 2013.
- H. F. Rueda, A. Parada Mayorga y H. Arguello, “Spectral resolution enhancement of hyperspectral imagery by a multipleaperture compressive optical imaging system”, Ingeniería e Investigación, vol. 34, nº 3, pp. 50-55, 2014.
- A. Plaza, J. Plaza, A. Paz y S. Sánchez, “Parallel Hyperspectral Image and Signal Processing”, IEEE Signal Processing Mag, vol. 28, nº 3, pp. 119-126, 2011.
- A. J. Plaza y C.-I. Chang, High Performance Computing in Remote Sensing, New York: Chapman & Hall, 2008.
- J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. M. Nasrabadi y J. Chanussot, “Hyperspectral Remote Sensing Data Analysis and Future Challenges”, IEEE Geoscience and remote sensing magazine, vol. 1, nº 2, pp. 6-36, 2013.
- Q. Tong, Y. Xue y L. Zhang, “Progress in Hyperspectral Remote Sensing Science and Technology in China Over the Past Three Decades”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, nº 1,pp. 70-91, 2014.
- Sugianto, R. Merton y S. Laffan, “An Overview of the CHRIS/PROBA Mission: A New Generation of Multiangle Hyperspectral Remote Sensing and Its Application to Agriculture” nºTS22.2, New Development and Applications for Imagery Conference, Jakarta, Indonesia, 2004.
- AngloGold Ashanti, “Anglogold Ashanti Colombia”, 28-01-2015. [En línea]. Disponible: http://www.anglogoldashanti.com.co/.
- ANH, Agencia Nacional de Hidrocarburos, “ANH”, 01-02-2015. [En línea]. Disponible: http://www.anh.gov.co/buscar/Paginas/results.aspx?k=hiperespectral.
- Y. B. López, Metodología para identificar cultivos de coca mediante análisis de parámetros red edge y espectroscopia de imágenes, Tesis, Universidad Nacional de Colombia, Bogotá,
- Ministerio de Educación Colombia, “Centro Virtual de Noticias de la Educación”, 04 02 2015. [En línea]. Disponible: http://www.mineducacion.gov.co/cvn/1665/w3-article-309017.html.
- ONU-SPIDER, “Oficina de Apoyo Regional de ONU-SPIDER”, 26 03 2014. [En línea]. Disponible: http://www.un-spider.org/es/node/8292.
- I. Lizarazo, “Vegetation condition assessment using proximal and remote sensors”, 27 10 2013. [En línea]. Disponible: http://www. bdigital.unal.edu.co/46583/1/07795062.2014.pdf.