Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Evaluación de QoS en redes híbridas RF/Li-Fi sobre entornos de 5ª generación

Resumen

Este documento se elaboró para evaluar los escenarios más relevantes en los que es necesario establecer parámetros de QoS sobre redes híbridas RF/Li-Fi, con la intención de determinar las posibilidades de mejora que ofrece esta tecnología y valorar de forma realista el potencial de desarrollo, específicamente, sobre servicios en tiempo real. Se revisan las alternativas en IoT, aplicaciones, balanceo de cargas, escenarios de 5ª generación, sensores wireless y seguridad, además de simulaciones y arquitecturas de interoperabilidad de tecnologías.

Palabras clave

Internet de las cosas, Li-Fi, RF, Teoría de la evolución de Juego, 5a generación

PDF (English) XML (English)

Citas

  1. N. Savage, “Li-Fi Gets ready to compete with Wi-Fi,” [online] IEEE Spectrum, vol. Dec, pp. 13-16, 2014. DOI: https://doi.org/10.1109/MSPEC.2014.6964914
  2. A. Mamta, R. Abhishek Roy, and S. Navrati, “Next Generation 5G Wireless Networks: A Comprehensive Survey,” IEEE Communications Surveys & Tutorials, vol. 18 (3), pp. 1617-1655, Feb. 2016. DOI: http://doi.org/10.1109/COMST.2016.2532458. DOI: https://doi.org/10.1109/COMST.2016.2532458
  3. J. Jiang, Y. Huo, F. Jin, P. Zhang, Z. Wang, Z. Xu, H. Haas, and L. Hanzo, “Video Streaming in the Multiuser Indoor Visible Light Downlink,” IEEE Access, vol. 3, pp. 2959-2986, Dec. 2015. DOI: http://doi.org/10.1109/ACCESS.2015.2513010. DOI: https://doi.org/10.1109/ACCESS.2015.2513010
  4. E. Yaacoub, “On the Use of Device-to-Device Communications for QoS and Data Rate Enhancement in LTE Public Safety Networks,” in IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Istanbul, Turkey. DOI: http://doi.org/10.1109/WCNCW.2014.6934892. DOI: https://doi.org/10.1109/WCNCW.2014.6934892
  5. X. Li, R. Zhang, and L. Hanzo, “Cooperative load Balancing in Hybrid visible light communications and WiFi,” IEEE Trans. Commun, vol. 63 (4), pp. 1319-1329, Mar. 2015. DOI: http://doi.org/10.1109/TCOMM.2015.2409172. DOI: https://doi.org/10.1109/TCOMM.2015.2409172
  6. M. Igbal, S. Ashraf, J. Saltz, and S. Bokhari, “Perfomance Tradeoffs in static and Dynamic strategies,” [online]. NASA Archives, 1986. Disponible en: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19860014876.pdf.
  7. Cisco, “How Does Load Balancing Work?” [online]. Cisco Enterprises. Document ID: 5212. 2015. Disponible en: http://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/5212-46.html.
  8. Y. Wang, X. Wu, and H. Haas, “Distributed Load Balancing for Internet of Things by using Li-Fi and RF Hybrid Network,” in IEEE 26th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Mobile and Wireless Networks, Hong Kong, China, 2015. DOI: http://doi.org/10.1109/PIMRC.2015.7343497. DOI: https://doi.org/10.1109/PIMRC.2015.7343497
  9. A. Esmailpour, J. Victor, and P. Rodriguez, “Integrated QoS provisioning for unified LTE-WiMAX networks,” in International Conference on Computing, Networking and Communications (ICNC), Kauai, HI, USA, 2016. DOI: http://doi.org/10.1109/ICCNC.2016.7440597. DOI: https://doi.org/10.1109/ICCNC.2016.7440597
  10. Y. Guo, Z. Antoniou, and S. Dixit, “Resource management and quality of service in third generation wireless network,” IEEE Communications Magazine, vol. 39 (2), pp. 125-133, Feb. 2001. DOI: http://doi.org/10.1109/35.900641. DOI: https://doi.org/10.1109/35.900641
  11. S. Talwar, D. Choudhury, K. Dimou, E. Aryafar, B. Bangerter, and K. Stewart, “Enabling Technologies and Architectures for 5G Wireless,” in Mycrowave Sympsium (IMS) IEEE MTTS-International, Tampa, FL, USA, 2015. DOI: http://doi.org/10.1109/MWSYM.2014.6848639. DOI: https://doi.org/10.1109/MWSYM.2014.6848639
  12. A. Y. Panah, "Utility-Based Radio Link Assignment in Multi-Radio Heterogeneous Networks," in IEEE Globecom workshop, Anaheim, CA, USA, 2012. DOI: http://doi.org/10.1109/GLOCOMW.2012.6477645. DOI: https://doi.org/10.1109/GLOCOMW.2012.6477645
  13. T. L. Marzetta, "Noncooperative cellular wireless with unlimited number of base station antennas," IEEE Transactions on Wireless Communications, vol. 9 (11), pp. 3590-3600, Oct. 2010. DOI: http://doi.org/10.1109/TWC.2010.092810.091092. DOI: https://doi.org/10.1109/TWC.2010.092810.091092
  14. S. Rangan, "Millimeter wave cellular wireless networks: potentials and challenges," Proceedings of the IEEE, vol. 102 (3), pp. 366-385, Mar. 2014. DOI: http://doi.org/10.1109/JPROC.2014.2299397. DOI: https://doi.org/10.1109/JPROC.2014.2299397
  15. A. Pyattaev, "3GPP LTE Traffic Offloading onto WiFi Direct," in IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Shanghai, China, 2013. DOI: http://doi.org/10.1109/WCNCW.2013.6533328. DOI: https://doi.org/10.1109/WCNCW.2013.6533328
  16. A. Sabharwal, "In-band full-duplex wireless: challenges and opportunities," IEEE Journal on selected areas in communications, vol. 32 (9), pp. 1637-1652, Sep. 2013. DOI: http://doi.org/10.1109/JSAC.2014.2330193. DOI: https://doi.org/10.1109/JSAC.2014.2330193
  17. Y. Choi, "Simultaneous Transmission and Reception: Algorithm, Design and System Level Performance," IEEE Transactions on Wireless Communications, vol. 12 (12), pp. 5992 - 6010, Oct. 2013. DOI: http://doi.org/10.1109/TWC.2013.101713.121152. DOI: https://doi.org/10.1109/TWC.2013.101713.121152
  18. A. Guevara, and V. Vásquez, “Estado actual de las redes LTE en Latinoamérica. Cuenca, Ecuador: Universidad de Cuenca,” Grade Thesis, Universidad de Cuenca, 2013.
  19. Z. Al-Husseiny, and P. Frenger, “Enhancing LTE Energy Performance with Antenna Muting and Dynamic Psi-Omni Configuration,” in IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 2015. DOI: http://doi.org/10.1109/VTCSpring.2015.7145824. DOI: https://doi.org/10.1109/VTCSpring.2015.7145824
  20. D. Micheli, A. Delfini, F. Santoni, F. Volpini, and M. Marchetti, “Measurement of Electromagnetic Field Attenuation by Building Walls in the Mobile Phone and Satellite Navigation Frequency Bands,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 698 - 702, Dec. 2014. DOI: http://doi.org/10.1109/LAWP.2014.2376811. DOI: https://doi.org/10.1109/LAWP.2014.2376811
  21. O. Elloumi, J. Song, Y. Ghamri-Doudane, and V. Leung, “IoT _ M2M From Research To Standards The Next Steps,” IEEE communications Magazine, vol. 53 (9), pp. 8-9, Sep. 2015. DOI: http://doi.org/10.1109/MCOM.2015.7263366. DOI: https://doi.org/10.1109/MCOM.2015.7263366
  22. L. Rana, and S. Su, “Kalman Filter Based Microgrid State Estimation and Control Using the IoT with 5G Networks,” in IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Brisbane, QLD, Australia, 2007. DOI: http://doi.org/10.1109/APPEEC.2015.7380989. DOI: https://doi.org/10.1109/APPEEC.2015.7380989
  23. T. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. Wong, J. Schulz, M. Samimi, and F. Gutierrez, “Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!,” IEEE Access, vol. 1, pp 335-349, May. 2013. DOI: http://doi.org/10.1109/ACCESS.2013.2260813. DOI: https://doi.org/10.1109/ACCESS.2013.2260813
  24. W. Ejaz, N. Ejaz, H. Kim, A. Anpalagan, M. Jo, and N. Hasan, “Network Selection and Channel Allocation for Spectrum Sharing in 5G Heterogeneous Networks,” IEEE Access, vol. 4, pp. 980-992, 2016. DOI: http://doi.org/10.1109/ACCESS.2016.2533394. DOI: https://doi.org/10.1109/ACCESS.2016.2533394
  25. S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. Soong, J. Zhang, and J. Andrews, “What Will 5G Be?,” IEEE Journal on Selected Areas in Communications, vol. 32 (6), pp. 1065 – 1082. 2015. DOI: http://doi.org/10.1109/JSAC.2014.2328098. DOI: https://doi.org/10.1109/JSAC.2014.2328098
  26. N. Bhushan, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic, R. Sukhavasi, C. Patel, and S. Geirhofer, “Network densification: the dominant theme for wireless evolution into 5G,” IEEE Communications Magazine, vol. 52 (2), pp. 82 - 89, Feb. 2014. DOI: http://doi.org/10.1109/MCOM.2014.6736747. DOI: https://doi.org/10.1109/MCOM.2014.6736747
  27. D. Archila, and F. Santamaría, “Estado del arte de las redes de sensores inalámbricos,” Revista TIA, vol. 2 (1), pp. 1-14, 2013.
  28. K. Fan, Y. Gong, and H. Yintang, “RFID secure application revocation for IoT in 5G,” in IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, Aug. 2015. DOI: http://doi.org/10.1109/Trustcom.2015.372. DOI: https://doi.org/10.1109/Trustcom.2015.372
  29. R. Scopigno, A. Autolitano, T. Acarman, C. Yaman, and S. Topsu, “The potential benefits of on-board Li-Fi for the cooperation among vehicles,” in 17th International Conference on Transparent Optical Networks (ICTON), 2015. DOI: https://doi.org/10.1109/ICTON.2015.7193411
  30. A. Kulhari, A. Pandey, and D. Shukla, “Implementing and testing Priority Scheduler and Token Bucket Plicer In Differentiated services,” in International Journal of Computer Applications, 2014. DOI: https://doi.org/10.5120/17745-8818
  31. H. Zarrincoub, “5G/LTE/WLAN: Waveform Generation, Simulation, Measurement and over the air Testing with MATLAB,” Grade Thesis.
  32. GPP, “Arquitectura 5G,” 3GPP. Avaiable in: http://www.w3ii.com/es/5g/5g_architecture.html.
  33. “View on 5G Architecture”.5GG Architecture Working Group. Available in: http://5g-ppp.eu/wp-content/uploads/2017/07/5G-PPP-5G-Architecture-White-Paper-2-Summer-2017_For-Public-Consultation.pdf.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.