Evaluación de irreversibilidades en un sistema de refrigeración por absorción amoniaco-agua empleando tres modelos matemáticos diferentes para calcular las propiedades termodinámicas
Resumen
Los análisis por Segunda Ley, o de Exergia, en los Sistemas de Refrigeración por Absorción (SRA) son muy importantes, ya que permiten realizar análisis de optimización de acuerdo con el trabajo disponible, los cuales se establecen a partir de las condiciones de operación y del cálculo de sus propiedades. Para el modelado de estos sistemas existen diversas metodologías de cálculo para las propiedades termodinámicas. En este trabajo se realiza un estudio termodinámico sobre un SRA con mezcla amoniaco-agua propuesto (Caso Base), con la finalidad de evaluar la sensibilidad en las irreversibilidades globales y por equipo. Para tal efecto se emplearon tres metodologías existentes: (M1) el modelo de Ibrahim y Klein (1993), a través del software comercial Engineering Equation Solver (EES); (M2) el modelo propuesto por Tillner-Roth y Friend (1998), a través del software REFPROP v.8.0, desarrollado por el National Institute of Standars and Technology (NIST), y (M3) la metodología propuesta por Xu y Goswami (1999), programada para este análisis. Las diferencias entre las propiedades obtenidas y el funcionamiento del SRA por Primera Ley no son significativas en la evaluación del COP, obteniendo variaciones mínimas (Caso Base: 0.595, M1: 0.596, M2: 0.594, M3: 0.599). Para el análisis por Segunda Ley, la irreversibilidad total del sistema para los tres modelos resultó ser la misma (Irr Global: 123.339 kW), a pesar de que en la irreversibilidad por equipo sobresalen las diferencias entre el Intercambiador de la Solución (M1: 5.783kW, M2: 6.122kW, M3: 8.701kW), el Desorbedor (M1: 51.302kW, M2: 45.713kW, M3: 49.098kW) y el Rectificador (M1: 0.766kW, M2: 3.565kW, M3: 0.427kW). Los equipos que más destruyen exergia son el Desorbedor, el Absorbedor y el Condensador, respectivamente.Palabras clave
coeficiente de desempeño, irreversibilidad, propiedades amoniaco-agua, sistema de refrigeración por absorción
Citas
- A. Rivera, J. Cerezo, R. Rivero, et al., “Single Stage and Double Absorption heat transformers used to recover energy in a distillation column of butane and pentane,” Int J of Energy Research, vol. 27 (14), pp. 1279-1292, Nov. 2003. DOI: http://doi.org/10.1002/er.943. DOI: https://doi.org/10.1002/er.943
- A. I. Kalina, “Combined Cycle and waste-heat recovery power systems based on a novel thermodynamic energy cycle utilizing low-temperature heat for power generation,” ASME paper No. 83-JPGC-GT-3, 1983. DOI: https://doi.org/10.1115/83-JPGC-GT-3
- S. Stecco, and U. Desideri, “A thermodynamic analysis of the kalina cycles: comparisons, problems and perspectives,” Gas Turbine and Aeroengine Congress and Exposition: ASME, 1989. DOI: https://doi.org/10.1115/89-GT-149
- S. H. Rizvi, and R. A. Heidemann, “Vapor-Liquid equilibria in the ammonia-water system,” J Chem Eng Data, vol. 32 (2), pp. 183-191, Apr. 1987. DOI: http://doi.org/10.1021/je00048a017. DOI: https://doi.org/10.1021/je00048a017
- R. A. Macris, B. E. Eakin, R. T. Ellington, et al., “Physical and thermodynamic properties of ammonia-water mixtures,” Research Bulletin No. 14. Inst. of Gas Technology, 1964.
- R. T. Ellington, G. Kinst, R. E. Peck, el at., “The absorption cooling process,” Research Bulletin, Institute of Gas Technology, 1957.
- R. Tillner-Roth, and G. Friend, “Survey and Assessment of available measurements on thermodynamic properties of the mixture {Water+Ammonia},” J Phys Chem Ref Data, vol. 27(1), pp. 45-61, Jan. 1998. DOI: http://doi.org/10.1063/1.556014. DOI: https://doi.org/10.1063/1.556014
- A. Vidal, R. Best, R. Rivero, et al., “Analysis of a combined power and refrigeration cycle by the exergy method,” Energy, vol. 31 (15), pp. 3401-3414, Dec. 2006. DOI: http://doi.org/10.1016/j.energy.2006.03.001. DOI: https://doi.org/10.1016/j.energy.2006.03.001
- E. Thorin, C. Dejfors, and G. Svedberg, “Thermodynamic properties of ammonia-water mixtures for power cycles,” Int J Thermophys, vol. 19(2), pp. 501-510, 1998. DOI: http://doi.org/10.1023/A:1022525813769. DOI: https://doi.org/10.1023/A:1022525813769
- A. A. Zatorskii, “Algorithm for calculation of the parameters of the junction points of the cycles of absorption-type water-ammonia refrigeration machines in a digital computer,” Plenum Publishing Corporation, pp. 716-719, 1979. DOI: https://doi.org/10.1007/BF01155981
- K. E. Herold, K. Hain, and M. J. Moran, “AMMWAT: A computer program for calculating the thermodynamic properties of ammonia and water mixtures using a Gibbs Free Energy formulation,” ASME 4, pp. 65-75, 1988.
- Y. M. Park, and R. E. Sonntag, “Thermodynamic properties of ammonia-water mixtures: a generalized equation-of-state approach,” ASME Trans, vol. 97, pp. 150-159, 1991.
- S. N. Mumah, S.S. Adefila, and E.A. Arinze, “Properties generation procedures for first and second law analyses of ammonia-water heat pump system,” Energy Convers Mgmt, vol. 35 (8), pp. 727-736, Aug. 1994. DOI: http://doi.org/10.1016/0196-8904(94)90058-2. DOI: https://doi.org/10.1016/0196-8904(94)90058-2
- R. Tillner-Roth, and G. Friend, “A Helmholtz free energy formulation of the thermodynamic properties of the mixture {Water+Ammonia},” J Phys Chem Ref Data, vol. 27(1), pp. 63-96, Jan. 1998. DOI: http://doi.org/10.1063/1.556015. DOI: https://doi.org/10.1063/1.556015
- A. Nowarski, and D. G. Friend, “Application of the Extended Corresponding States Method to the Calculation of the Ammonia-Water Mixture Thermodynamic Surface,” International Journal of Thermophysics, vol. 19 (4), pp. 1133-1142, 1998. DOI: http://doi.org/10.1023/A:1022641709904. DOI: https://doi.org/10.1023/A:1022641709904
- R. M. Enick, G. P. Donahey, and M. Holsinger, “Modeling the High-Pressure Ammonia-Water System with WATAM and the Peng-Robinson Equation of Sstate for Kalina Cycle Studies,” Ind Eng Chem Res, vol. 37 (5), pp. 1644-1650, May. 1998. DOI: http://doi.org/10.1021/ie970638s. DOI: https://doi.org/10.1021/ie970638s
- L. A. Weber, “Estimating the virial coefficients of the ammonia + water mixture,” Fluid Phase Equilibria, vol. 162 (1-2), pp. 31-49, Aug. 1999. DOI: http://doi.org/10.1016/S0378-3812(99)00181-8. DOI: https://doi.org/10.1016/S0378-3812(99)00181-8
- F. Xu, and D. Y. Goswami, “Thermodynamic properties of ammonia-water mixtures for power-cycle applications,” Energy, vol. 24 (6), pp. 525-536, Jun. 1999. DOI: http://doi.org/10.1016/S0360-5442(99)00007-9. DOI: https://doi.org/10.1016/S0360-5442(99)00007-9
- R. Sharma, D. Singhal, R. Ghosh, and A. Dwivedi, “Potential applications of artificial neural networks to thermodynamics: vapor-Liquid equilibrium predictions,” Computers and Chemical Engineering, vol. 23 (3), pp. 385-390, Feb. 1999. DOI: http://doi.org/10.1016/S0098-1354(98)00281-6. DOI: https://doi.org/10.1016/S0098-1354(98)00281-6
- R. Lugo, J. Guilpart, and L. Fournaison, “Calculation method of thermophysical properties of ammonia-water mixtures,” Presentación Second Workshop on Ice Slurries, Paris France: International Institute of Refrigeration, 2000.
- A. A. Vasserman, A. G. Slynko, S. V. Bodyul, et al., “A Thermophysical Property Databank for Technically Important Gases and Liquids,” International Journal of Thermodynamics, vol. 22 (2), pp. 477-485, 2001. DOI: http://doi.org/10.1023/A:1010774831521. DOI: https://doi.org/10.1023/A:1010774831521
- R. Lugo, L. Fournaison, J. M. Chourot, et al., “An excess function method to model the thermophysical properties of one-phase secondary refrigerants,” International Journal of Refrigeration, vol. 25 (7), pp. 916-923, Nov. 2002. DOI: http://doi.org/10.1016/S0140-7007(01)00105-0. DOI: https://doi.org/10.1016/S0140-7007(01)00105-0
- R. Span, and W. Wagner, “Equations of State for Technical Applications. I. Simultaneously Optimized Functional Forms for Nonpolar and Polar Fluids,” Int J of Thermophysics, vol. 24 (1), pp. 1-39, 2003. DOI: http://doi.org/10.1023/A:1022390430888. DOI: https://doi.org/10.1023/A:1022390430888
- R. Span, and W. Wagner, “Equations of State for Technical Applications. III. Results for Polar Fluids,”Int J of Thermophysics, vol. 24 (1), pp. 111-162, 2003. DOI: http://doi.org/10.1023/A:1022362231796. DOI: https://doi.org/10.1023/A:1022362231796
- M. Barhoumi, A. Snoussi, E. N. Ben, et al., “Modélistion des données thermodynamiques du mélange ammoniac/eau,” Int J Refrig, vol. 27 (3), pp. 271-283, May. 2004. DOI: http://doi.org/10.1016/j.ijrefrig.2003.09.005. DOI: https://doi.org/10.1016/j.ijrefrig.2003.09.005
- Kh. Mejbri, and A. Bellagi, “Modelling of the thermodynamic properties of the water-ammonia mixture by three different approaches,” Int J Refrig, vol. 29 (2), pp. 211-218, Mar. 2006. DOI: http://doi.org/10.1016/j.ijrefrig.2005.06.002. DOI: https://doi.org/10.1016/j.ijrefrig.2005.06.002
- A. Sencan, “Artificial intelligent methods for thermodynamic evaluation of ammonia-water refrigeration system,” Energy Conv & Man, vol. 47, pp. 3319-3332, 2006. DOI: http://doi.org/10.1016/j.enconman.2006.01.002. DOI: https://doi.org/10.1016/j.enconman.2006.01.002
- A. H. Farrokh-Niae, H. Moddarress, and M. Mohsen-Nia, “A three-parameter cubic equation of state for prediction of thermodynamic properties of fluids,” J Chem Thermodynamics, vol. 40 (1), pp. 84-95, Jan. 2008. DOI: http://doi.org/10.1016/j.jct.2007.05.012. DOI: https://doi.org/10.1016/j.jct.2007.05.012
- N. S. Ganesh, and T. Srinivas, “Evaluation of thermodynamic properties of ammonia-water mixture up to 100 bar for power application systems,” Journal of Mechanical Engineering Research, vol. 3(1), pp. 25-39, 2011.
- K. Sadhukhan, A. K. Chowdhuryi, and B. K. Mandal, “Computer Based Thermodynamic Properties of Ammonia-Water Mixture for the Analysis of Power and Refrigeration Cycles,” Int J of Thermodynamics, vol. 12(3), pp. 133-139, 2012. DOI: http://doi.org/10.5541/ijot.375. DOI: https://doi.org/10.5541/ijot.375
- E. Thorin, “Thermophysical properties of ammonia-water mixtures for prediction of heat transfer areas in power cycles,” Int J Thermophys, vol. 22(1), pp. 201-214, 2001. DOI: http://doi.org/10.1023/A:1006745100278. DOI: https://doi.org/10.1023/A:1006745100278
- J. Pátek, and J. Klomfar, “Simple functions for fast calculations of selected thermodynamic properties of the ammonia-water system,” Int J Refrig, vol. 18(4), pp. 228-234, May. 1995. DOI: http://doi.org/10.1016/0140-7007(95)00006-W. DOI: https://doi.org/10.1016/0140-7007(95)00006-W
- E. Thorin, “Comparison of correlations for predicting thermodynamic properties of ammonia-water mixtures,” Int J Thermophys, vol. 21(4), pp. 853-870, 2000. DOI: http://doi.org/10.1023/A:1006658107014. DOI: https://doi.org/10.1023/A:1006658107014
- K. E. Herold, R. Radermacher, and S. A. Klein, “Absorption chillers and heat pump,” CRC Press Inc, USA, 1996.
- O. M. Ibrahim, and S. A. Klein, “Thermodynamic properties of ammonia-water mixtures,” ASHRAE Trans, pp. 1495-1502, 1993.
- F. Xu, and D. Y. Goswami, “Erratum to: Thermodynamic properties of ammonia-water mixture for power-cycle applications,” Energy, vol. 24 (1999), pp. 525-536, Energy, vol. 27 (6), p. 203, Jun. 2002. DOI: http://doi.org/10.1016/S0360-5442(99)00007-9. DOI: https://doi.org/10.1016/S0360-5442(01)00060-3
- C. Martin, “Study of cooling production with a combined power and cooling thermodynamic cycle,” Ph. D. Thesis, University of Florida, USA. 2004. DOI: https://doi.org/10.1115/ISEC2004-65026
- Y. M. El-Sayed, and M. Tribus, “Thermodynamic properties of water ammonia mixtures theoretical implementation for use in power cycles analysis,” Special publication AES (1) New York, ASME, pp. 89-95, 1985.
- P. C. Gillespie, W. V. Wilding, and G. M. Wilson, “Vapor-Liquid equilibrium measurements on the ammonia-water system from 313 K to 589 K,” AIChE Symp Ser, vol. 83(256), pp. 97-127, 1987.
- B. Ziegler, and Ch. Trepp, “Equation of state for ammonia-water mixtures,” Int J Refrig, vol. 7 (2), pp. 101-106, Mar. 1984. DOI: http://doi.org/10.1016/0140-7007(84)90022-7. DOI: https://doi.org/10.1016/0140-7007(84)90022-7
- A. A. Hasan, and D. Y. Goswami, “Exergy analysis of a Combined Power and Refrigeration Thermodynamic Cycle Driven by a Solar Heat Source,” Journal of Solar Energy Engineering, vol. 125 (1), pp. 55-60, 2003. DOI: http://doi.org/10.1115/1.1530628. DOI: https://doi.org/10.1115/1.1530628
- D. Boer, B. H. Gebreslassie, M. Medrano, et al., “Effect of internal heat recovery in ammonia-water absorption cooling cycles: exergy and structural analysis,” vol. 12(1), pp. 17-27, Mar. 2009.
- I. Vera-Romero and Ch. L. Heard-Wade, “Desarrollo de una aplicación para el cálculo de las propiedades de la mezcla amoniaco-agua,” Revista Ingeniería Investigación y Desarrollo,” vol. 17(2), pp. 58-72, Jun. 2017. DOI: http://doi.org/10.19053/1900771X.v17.n2.2017.7185. DOI: https://doi.org/10.19053/1900771X.v17.n2.2017.7185
Descargas
Los datos de descargas todavía no están disponibles.