Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Evaluación de irreversibilidades en un sistema de refrigeración por absorción amoniaco-agua empleando tres modelos matemáticos diferentes para calcular las propiedades termodinámicas

Resumen

Los análisis por Segunda Ley, o de Exergia, en los Sistemas de Refrigeración por Absorción (SRA) son muy importantes, ya que permiten realizar análisis de optimización de acuerdo con el trabajo disponible, los cuales se establecen a partir de las condiciones de operación y del cálculo de sus propiedades. Para el modelado de estos sistemas existen diversas metodologías de cálculo para las propiedades termodinámicas. En este trabajo se realiza un estudio termodinámico sobre un SRA con mezcla amoniaco-agua propuesto (Caso Base), con la finalidad de evaluar la sensibilidad en las irreversibilidades globales y por equipo. Para tal efecto se emplearon tres metodologías existentes: (M1) el modelo de Ibrahim y Klein (1993), a través del software comercial Engineering Equation Solver (EES); (M2) el modelo propuesto por Tillner-Roth y Friend (1998), a través del software REFPROP v.8.0, desarrollado por el National Institute of Standars and Technology (NIST), y (M3) la metodología propuesta por Xu y Goswami (1999), programada para este análisis. Las diferencias entre las propiedades obtenidas y el funcionamiento del SRA por Primera Ley no son significativas en la evaluación del COP, obteniendo variaciones mínimas (Caso Base: 0.595, M1: 0.596, M2: 0.594, M3: 0.599). Para el análisis por Segunda Ley, la irreversibilidad total del sistema para los tres modelos resultó ser la misma (Irr Global: 123.339 kW), a pesar de que en la irreversibilidad por equipo sobresalen las diferencias entre el Intercambiador de la Solución (M1: 5.783kW, M2: 6.122kW, M3: 8.701kW), el Desorbedor (M1: 51.302kW, M2: 45.713kW, M3: 49.098kW) y el Rectificador (M1: 0.766kW, M2: 3.565kW, M3: 0.427kW). Los equipos que más destruyen exergia son el Desorbedor, el Absorbedor y el Condensador, respectivamente.

Palabras clave

coeficiente de desempeño, irreversibilidad, propiedades amoniaco-agua, sistema de refrigeración por absorción

PDF (English) XML (English)

Citas

  1. A. Rivera, J. Cerezo, R. Rivero, et al., “Single Stage and Double Absorption heat transformers used to recover energy in a distillation column of butane and pentane,” Int J of Energy Research, vol. 27 (14), pp. 1279-1292, Nov. 2003. DOI: http://doi.org/10.1002/er.943. DOI: https://doi.org/10.1002/er.943
  2. A. I. Kalina, “Combined Cycle and waste-heat recovery power systems based on a novel thermodynamic energy cycle utilizing low-temperature heat for power generation,” ASME paper No. 83-JPGC-GT-3, 1983. DOI: https://doi.org/10.1115/83-JPGC-GT-3
  3. S. Stecco, and U. Desideri, “A thermodynamic analysis of the kalina cycles: comparisons, problems and perspectives,” Gas Turbine and Aeroengine Congress and Exposition: ASME, 1989. DOI: https://doi.org/10.1115/89-GT-149
  4. S. H. Rizvi, and R. A. Heidemann, “Vapor-Liquid equilibria in the ammonia-water system,” J Chem Eng Data, vol. 32 (2), pp. 183-191, Apr. 1987. DOI: http://doi.org/10.1021/je00048a017. DOI: https://doi.org/10.1021/je00048a017
  5. R. A. Macris, B. E. Eakin, R. T. Ellington, et al., “Physical and thermodynamic properties of ammonia-water mixtures,” Research Bulletin No. 14. Inst. of Gas Technology, 1964.
  6. R. T. Ellington, G. Kinst, R. E. Peck, el at., “The absorption cooling process,” Research Bulletin, Institute of Gas Technology, 1957.
  7. R. Tillner-Roth, and G. Friend, “Survey and Assessment of available measurements on thermodynamic properties of the mixture {Water+Ammonia},” J Phys Chem Ref Data, vol. 27(1), pp. 45-61, Jan. 1998. DOI: http://doi.org/10.1063/1.556014. DOI: https://doi.org/10.1063/1.556014
  8. A. Vidal, R. Best, R. Rivero, et al., “Analysis of a combined power and refrigeration cycle by the exergy method,” Energy, vol. 31 (15), pp. 3401-3414, Dec. 2006. DOI: http://doi.org/10.1016/j.energy.2006.03.001. DOI: https://doi.org/10.1016/j.energy.2006.03.001
  9. E. Thorin, C. Dejfors, and G. Svedberg, “Thermodynamic properties of ammonia-water mixtures for power cycles,” Int J Thermophys, vol. 19(2), pp. 501-510, 1998. DOI: http://doi.org/10.1023/A:1022525813769. DOI: https://doi.org/10.1023/A:1022525813769
  10. A. A. Zatorskii, “Algorithm for calculation of the parameters of the junction points of the cycles of absorption-type water-ammonia refrigeration machines in a digital computer,” Plenum Publishing Corporation, pp. 716-719, 1979. DOI: https://doi.org/10.1007/BF01155981
  11. K. E. Herold, K. Hain, and M. J. Moran, “AMMWAT: A computer program for calculating the thermodynamic properties of ammonia and water mixtures using a Gibbs Free Energy formulation,” ASME 4, pp. 65-75, 1988.
  12. Y. M. Park, and R. E. Sonntag, “Thermodynamic properties of ammonia-water mixtures: a generalized equation-of-state approach,” ASME Trans, vol. 97, pp. 150-159, 1991.
  13. S. N. Mumah, S.S. Adefila, and E.A. Arinze, “Properties generation procedures for first and second law analyses of ammonia-water heat pump system,” Energy Convers Mgmt, vol. 35 (8), pp. 727-736, Aug. 1994. DOI: http://doi.org/10.1016/0196-8904(94)90058-2. DOI: https://doi.org/10.1016/0196-8904(94)90058-2
  14. R. Tillner-Roth, and G. Friend, “A Helmholtz free energy formulation of the thermodynamic properties of the mixture {Water+Ammonia},” J Phys Chem Ref Data, vol. 27(1), pp. 63-96, Jan. 1998. DOI: http://doi.org/10.1063/1.556015. DOI: https://doi.org/10.1063/1.556015
  15. A. Nowarski, and D. G. Friend, “Application of the Extended Corresponding States Method to the Calculation of the Ammonia-Water Mixture Thermodynamic Surface,” International Journal of Thermophysics, vol. 19 (4), pp. 1133-1142, 1998. DOI: http://doi.org/10.1023/A:1022641709904. DOI: https://doi.org/10.1023/A:1022641709904
  16. R. M. Enick, G. P. Donahey, and M. Holsinger, “Modeling the High-Pressure Ammonia-Water System with WATAM and the Peng-Robinson Equation of Sstate for Kalina Cycle Studies,” Ind Eng Chem Res, vol. 37 (5), pp. 1644-1650, May. 1998. DOI: http://doi.org/10.1021/ie970638s. DOI: https://doi.org/10.1021/ie970638s
  17. L. A. Weber, “Estimating the virial coefficients of the ammonia + water mixture,” Fluid Phase Equilibria, vol. 162 (1-2), pp. 31-49, Aug. 1999. DOI: http://doi.org/10.1016/S0378-3812(99)00181-8. DOI: https://doi.org/10.1016/S0378-3812(99)00181-8
  18. F. Xu, and D. Y. Goswami, “Thermodynamic properties of ammonia-water mixtures for power-cycle applications,” Energy, vol. 24 (6), pp. 525-536, Jun. 1999. DOI: http://doi.org/10.1016/S0360-5442(99)00007-9. DOI: https://doi.org/10.1016/S0360-5442(99)00007-9
  19. R. Sharma, D. Singhal, R. Ghosh, and A. Dwivedi, “Potential applications of artificial neural networks to thermodynamics: vapor-Liquid equilibrium predictions,” Computers and Chemical Engineering, vol. 23 (3), pp. 385-390, Feb. 1999. DOI: http://doi.org/10.1016/S0098-1354(98)00281-6. DOI: https://doi.org/10.1016/S0098-1354(98)00281-6
  20. R. Lugo, J. Guilpart, and L. Fournaison, “Calculation method of thermophysical properties of ammonia-water mixtures,” Presentación Second Workshop on Ice Slurries, Paris France: International Institute of Refrigeration, 2000.
  21. A. A. Vasserman, A. G. Slynko, S. V. Bodyul, et al., “A Thermophysical Property Databank for Technically Important Gases and Liquids,” International Journal of Thermodynamics, vol. 22 (2), pp. 477-485, 2001. DOI: http://doi.org/10.1023/A:1010774831521. DOI: https://doi.org/10.1023/A:1010774831521
  22. R. Lugo, L. Fournaison, J. M. Chourot, et al., “An excess function method to model the thermophysical properties of one-phase secondary refrigerants,” International Journal of Refrigeration, vol. 25 (7), pp. 916-923, Nov. 2002. DOI: http://doi.org/10.1016/S0140-7007(01)00105-0. DOI: https://doi.org/10.1016/S0140-7007(01)00105-0
  23. R. Span, and W. Wagner, “Equations of State for Technical Applications. I. Simultaneously Optimized Functional Forms for Nonpolar and Polar Fluids,” Int J of Thermophysics, vol. 24 (1), pp. 1-39, 2003. DOI: http://doi.org/10.1023/A:1022390430888. DOI: https://doi.org/10.1023/A:1022390430888
  24. R. Span, and W. Wagner, “Equations of State for Technical Applications. III. Results for Polar Fluids,”Int J of Thermophysics, vol. 24 (1), pp. 111-162, 2003. DOI: http://doi.org/10.1023/A:1022362231796. DOI: https://doi.org/10.1023/A:1022362231796
  25. M. Barhoumi, A. Snoussi, E. N. Ben, et al., “Modélistion des données thermodynamiques du mélange ammoniac/eau,” Int J Refrig, vol. 27 (3), pp. 271-283, May. 2004. DOI: http://doi.org/10.1016/j.ijrefrig.2003.09.005. DOI: https://doi.org/10.1016/j.ijrefrig.2003.09.005
  26. Kh. Mejbri, and A. Bellagi, “Modelling of the thermodynamic properties of the water-ammonia mixture by three different approaches,” Int J Refrig, vol. 29 (2), pp. 211-218, Mar. 2006. DOI: http://doi.org/10.1016/j.ijrefrig.2005.06.002. DOI: https://doi.org/10.1016/j.ijrefrig.2005.06.002
  27. A. Sencan, “Artificial intelligent methods for thermodynamic evaluation of ammonia-water refrigeration system,” Energy Conv & Man, vol. 47, pp. 3319-3332, 2006. DOI: http://doi.org/10.1016/j.enconman.2006.01.002. DOI: https://doi.org/10.1016/j.enconman.2006.01.002
  28. A. H. Farrokh-Niae, H. Moddarress, and M. Mohsen-Nia, “A three-parameter cubic equation of state for prediction of thermodynamic properties of fluids,” J Chem Thermodynamics, vol. 40 (1), pp. 84-95, Jan. 2008. DOI: http://doi.org/10.1016/j.jct.2007.05.012. DOI: https://doi.org/10.1016/j.jct.2007.05.012
  29. N. S. Ganesh, and T. Srinivas, “Evaluation of thermodynamic properties of ammonia-water mixture up to 100 bar for power application systems,” Journal of Mechanical Engineering Research, vol. 3(1), pp. 25-39, 2011.
  30. K. Sadhukhan, A. K. Chowdhuryi, and B. K. Mandal, “Computer Based Thermodynamic Properties of Ammonia-Water Mixture for the Analysis of Power and Refrigeration Cycles,” Int J of Thermodynamics, vol. 12(3), pp. 133-139, 2012. DOI: http://doi.org/10.5541/ijot.375. DOI: https://doi.org/10.5541/ijot.375
  31. E. Thorin, “Thermophysical properties of ammonia-water mixtures for prediction of heat transfer areas in power cycles,” Int J Thermophys, vol. 22(1), pp. 201-214, 2001. DOI: http://doi.org/10.1023/A:1006745100278. DOI: https://doi.org/10.1023/A:1006745100278
  32. J. Pátek, and J. Klomfar, “Simple functions for fast calculations of selected thermodynamic properties of the ammonia-water system,” Int J Refrig, vol. 18(4), pp. 228-234, May. 1995. DOI: http://doi.org/10.1016/0140-7007(95)00006-W. DOI: https://doi.org/10.1016/0140-7007(95)00006-W
  33. E. Thorin, “Comparison of correlations for predicting thermodynamic properties of ammonia-water mixtures,” Int J Thermophys, vol. 21(4), pp. 853-870, 2000. DOI: http://doi.org/10.1023/A:1006658107014. DOI: https://doi.org/10.1023/A:1006658107014
  34. K. E. Herold, R. Radermacher, and S. A. Klein, “Absorption chillers and heat pump,” CRC Press Inc, USA, 1996.
  35. O. M. Ibrahim, and S. A. Klein, “Thermodynamic properties of ammonia-water mixtures,” ASHRAE Trans, pp. 1495-1502, 1993.
  36. F. Xu, and D. Y. Goswami, “Erratum to: Thermodynamic properties of ammonia-water mixture for power-cycle applications,” Energy, vol. 24 (1999), pp. 525-536, Energy, vol. 27 (6), p. 203, Jun. 2002. DOI: http://doi.org/10.1016/S0360-5442(99)00007-9. DOI: https://doi.org/10.1016/S0360-5442(01)00060-3
  37. C. Martin, “Study of cooling production with a combined power and cooling thermodynamic cycle,” Ph. D. Thesis, University of Florida, USA. 2004. DOI: https://doi.org/10.1115/ISEC2004-65026
  38. Y. M. El-Sayed, and M. Tribus, “Thermodynamic properties of water ammonia mixtures theoretical implementation for use in power cycles analysis,” Special publication AES (1) New York, ASME, pp. 89-95, 1985.
  39. P. C. Gillespie, W. V. Wilding, and G. M. Wilson, “Vapor-Liquid equilibrium measurements on the ammonia-water system from 313 K to 589 K,” AIChE Symp Ser, vol. 83(256), pp. 97-127, 1987.
  40. B. Ziegler, and Ch. Trepp, “Equation of state for ammonia-water mixtures,” Int J Refrig, vol. 7 (2), pp. 101-106, Mar. 1984. DOI: http://doi.org/10.1016/0140-7007(84)90022-7. DOI: https://doi.org/10.1016/0140-7007(84)90022-7
  41. A. A. Hasan, and D. Y. Goswami, “Exergy analysis of a Combined Power and Refrigeration Thermodynamic Cycle Driven by a Solar Heat Source,” Journal of Solar Energy Engineering, vol. 125 (1), pp. 55-60, 2003. DOI: http://doi.org/10.1115/1.1530628. DOI: https://doi.org/10.1115/1.1530628
  42. D. Boer, B. H. Gebreslassie, M. Medrano, et al., “Effect of internal heat recovery in ammonia-water absorption cooling cycles: exergy and structural analysis,” vol. 12(1), pp. 17-27, Mar. 2009.
  43. I. Vera-Romero and Ch. L. Heard-Wade, “Desarrollo de una aplicación para el cálculo de las propiedades de la mezcla amoniaco-agua,” Revista Ingeniería Investigación y Desarrollo,” vol. 17(2), pp. 58-72, Jun. 2017. DOI: http://doi.org/10.19053/1900771X.v17.n2.2017.7185. DOI: https://doi.org/10.19053/1900771X.v17.n2.2017.7185

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.