Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Genes y expresión de factores de virulencia en Escherichia coli aislada en animales de producción

Resumen

Los factores de virulencia de patógenos se expresan una vez superan los mecanismos fisiológicos de respuesta inmune por parte del organismo, Escherichia coli (E. coli) es una bacteria que se considera un problema en salud pública en todo el mundo debido a la alta prevalencia de mecanismos de resistencia y patogenicidad que expresa, se relaciona principalmente con infecciones intestinales y es transmitida en la cadena alimenticia; los determinantes genéticos que codifican factores de virulencia se trasladan entre diferentes especies o la misma, mediante el mecanismo de transferencia horizontal de genes. El objetivo de la presente revisión es describir factores de virulencia y genes que los codifican en cepas de E. coli aisladas de animales de producción y de productos alimenticios. En las bases de datos Medline, Lilacs, ScienceDirect, Scopus, SciELO y Dialnet, se realizó búsqueda utilizando una combinación de palabras claves validadas en inglés (gen, virulence, virulence factor, infection, horizontal gene transfer, mutation and production animals). En diferentes ambientes de producción se identificó la presencia de diferentes mecanismos de virulencia que varían según la especie animal y bacteriana, los genes con mayor circulación con Stx1, Stx2 codificantes de toxinas, Saa de adhesinas, ehxA de enterohemolisina, eaeA de intimina, IpfA de fimbrias. La vigilancia y control microbiológico en el área alimenticia y de producción animal es de gran importancia para evitar posibles brotes de enfermedades en población susceptible, por efecto de los factores de virulencia.

Palabras clave

Cadena Alimentaria, Escherichia coli, Genes, Reacción En Cadena De La Polimerasa, Virulencia

XLM PDF

Citas

  1. Akomoneh, E. A., Esemu, S. N & Kfusi, A. J. (2020). Prevalence and virulence gene profiles of Escherichia coli O157 from cattle slaughtered in Buea, Cameroon. PLoS ONE, 15(12 December), e0235583. https://doi.org/10.1371/journal.pone.0235583 DOI: https://doi.org/10.1371/journal.pone.0235583
  2. Al-Arfaj, A., Ali, S., Hessain, M., Zakri, M., Dawoud, M., Al-Maary, S., & Moussa, M. (2016). Phenotypic and genotypic analysis of pathogenic Escherichia coli virulence genes recovered from Riyadh, Saudi Arabia. Saudi Journal of Biological Sciences, 23(6), 713–717. https://doi.org/10.1016/J.SJBS.2015.11.011 DOI: https://doi.org/10.1016/j.sjbs.2015.11.011
  3. Alonso, M. Z., Krüger, A., Sanz, M. E., Padola, N. L., & Lucchesi, P. M. A. (2016). Serotypes, virulence profiles and stx subtypes of Shigatoxigenic Escherichia coli isolated from chicken derived products. Revista Argentina de Microbiologia, 48(4), 325–328. https://doi.org/10.1016/j.ram.2016.04.009 DOI: https://doi.org/10.1016/j.ram.2016.04.009
  4. Ateba, C. N., & Mbewe, M. (2016). Detection of Escherichia coli O157:H7 virulence genes in isolates from beef, pork, water, human and animal species in the northwest province, South Africa: Public health implications. Research in Microbiology, 162(3), 240–248. https://doi.org/10.1016/j.resmic.2010.11.008 DOI: https://doi.org/10.1016/j.resmic.2010.11.008
  5. Bag, M. A. S., Khan, M. S. R., Sami, M. D. H., Begum, F., Islam, M. S., Rahman, M. M., Rahman, M. T., & Hassan, J. (2021). Virulence determinants and antimicrobial resistance of E. coli isolated from bovine clinical mastitis in some selected dairy farms of Bangladesh. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2021.06.099 DOI: https://doi.org/10.1016/j.sjbs.2021.06.099
  6. Bolukaoto, J. Y., Kock, M. M., Strydom, K. A., Mbelle, N. M., & Ehlers, M. M. (2019). Molecular characteristics and genotypic diversity of enterohaemorrhagic Escherichia coli O157:H7 isolates in Gauteng region, South Africa. Science of the Total Environment, 692, 297–304. https://doi.org/10.1016/j.scitotenv.2019.07.119 DOI: https://doi.org/10.1016/j.scitotenv.2019.07.119
  7. Brusa, V., Costa, M., Padola, N. L., Etcheverría, A., Sampedro, F., Fernandez, P. S., Leotta, G. A., & Signorini, M. L. (2020). Quantitative risk assessment of haemolytic uremic syndrome associated with beef consumption in Argentina. PLoS ONE, 15(11 November), e0242317. https://doi.org/10.1371/journal.pone.0242317 DOI: https://doi.org/10.1371/journal.pone.0242317
  8. Cadona, J. S., Burgán, J., González, J., Bustamante, A. V., & Sanso, A. M. (2020). Differential expression of the virulence gene nleB among Shiga toxin-producing Escherichia coli strains. Heliyon, 6(6), e04277. https://doi.org/10.1016/j.heliyon.2020.e04277 DOI: https://doi.org/10.1016/j.heliyon.2020.e04277
  9. Carranza, C., León, R., Falcón, N., Neumann, A., & Kromm, C. (2016). Characterization and distribution of potentially avian pathogenic Escherichia coli isolates from broilers in Peru. Revista de Investigaciones Veterinarias Del Peru, 23(2), 209–219. https://doi.org/10.15381/rivep.v23i2.901 DOI: https://doi.org/10.15381/rivep.v23i2.901
  10. Carvajal, E., Rueda, E., Talavera, M., Torres, M., López, D., & Vásquez, M. C. (2021). Resistencia a antibióticos betalactámicos y quinolonas en Escherichia coli aislada de pollos broiler. Revista de Investigaciones Veterinarias del Perú, 32(2). http://dx.doi.org/10.15381/rivep.v32i2.20012 DOI: https://doi.org/10.15381/rivep.v32i2.20012
  11. Cruz-Soto, A. S., Toro-Castillo, V., Munguía-Magdaleno, C. O., Torres-Flores, J. E., Flores-Pantoja, L. E., Loeza-Lara, P. D., Jiménez-Mejía, R., Cruz-Soto, A. S., Toro-Castillo, V., Munguía-Magdaleno, C. O., Torres-Flores, J. E., Flores-Pantoja, L. E., Loeza-Lara, P. D., & Jiménez-Mejía, R. (2020). Relación genética, formación de biopelículas, movilidad y virulencia de Escherichia coli aislada de mastitis bovina. Revista Mexicana de Ciencias Pecuarias, 11(1), 167–182. https://doi.org/10.22319/RMCP.V11I1.4998 DOI: https://doi.org/10.22319/rmcp.v11i1.4998
  12. Cunha, M. P. V., De Oliveira, M. G. X., De Oliveira, M. C. V., Da Silva, K. C., Gomes, C. R., Moreno, A. M., & Knöbl, T. (2016). Virulence profiles, phylogenetic background, and antibiotic resistance of Escherichia coli isolated from turkeys with airsacculitis. Scientific World Journal, 2014. https://doi.org/10.1155/2014/289024 DOI: https://doi.org/10.1155/2014/289024
  13. Do, K. H., Park, H. E., Byun, J. W., & Lee, W. K. (2020). Virulence and antimicrobial resistance profiles of Escherichia coli encoding mcr gene from diarrhoeic weaned piglets in Korea during 2007–2016. Journal of Global Antimicrobial Resistance, 20, 324–327. https://doi.org/10.1016/j.jgar.2019.09.010 DOI: https://doi.org/10.1016/j.jgar.2019.09.010
  14. Douëllou, T., Delannoy, S., Ganet, S., Mariani-Kurkdjian, P., Fach, P., Loukiadis, E., Montel, M., & Thevenot-Sergentet, D. (2016). Shiga toxin-producing Escherichia coli strains isolated from dairy products — Genetic diversity and virulence gene profiles. International Journal of Food Microbiology, 232, 52–62. https://doi.org/10.1016/J.IJFOODMICRO.2016.04.032 DOI: https://doi.org/10.1016/j.ijfoodmicro.2016.04.032
  15. Farfán, A., Ariza, E., Vargas, S., & Vargas, L (2016). Virulence mechanisms of enteropathogenic Escherichia coli. Revista Chilena de Infectologia, 33(4), 438–450. https://doi.org/10.4067/S0716-10182016000400009 DOI: https://doi.org/10.4067/S0716-10182016000400009
  16. Fayemi, O. E., Akanni, G. B., Elegbeleye, J. A., Aboaba, O. O., & Njage, P. M. (2021). Prevalence, characterization and antibiotic resistance of Shiga toxigenic Escherichia coli serogroups isolated from fresh beef and locally processed ready-to-eat meat products in Lagos, Nigeria. International Journal of Food Microbiology, 347, 109191. https://doi.org/10.1016/J.IJFOODMICRO.2021.109191 DOI: https://doi.org/10.1016/j.ijfoodmicro.2021.109191
  17. Fu, Q., Su, Z., Cheng, Y., Wang, Z., Li, S., Wang, H., Sun, J., & Yan, Y. (2017). Clustered, regularly interspaced short palindromic repeat (CRISPR) diversity and virulence factor distribution in avian Escherichia coli. Research in Microbiology, 168(2), 147–156. https://doi.org/10.1016/J.RESMIC.2016.10.002 DOI: https://doi.org/10.1016/j.resmic.2016.10.002
  18. Gazal, L. E. S., Puno-Sarmiento, J. J., Medeiros, L. P., Cyoia, P. S., Da Silveira, W. D., Kobayashi, R. K. T., & Nakazato, G. (2016). Presence of pathogenicity islands and virulence genes of extraintestinal pathogenic Escherichia coli (ExPEC) in isolates from avian organic fertilizer. Poultry Science, 94(12), 3025–3033. https://doi.org/10.3382/PS/PEV278 DOI: https://doi.org/10.3382/ps/pev278
  19. He, L., Simpson, D. J., & Gänzle, M. G. (2020). Detection of enterohaemorrhagic Escherichia coli in food by droplet digital PCR to detect simultaneous virulence factors in a single genome. Food Microbiology, 90, 103466. https://doi.org/10.1016/j.fm.2020.103466 DOI: https://doi.org/10.1016/j.fm.2020.103466
  20. Herrera Arias, F., Santos Buelga, J., & Villamizar Gallardo, R. (2019). Primer reporte de Escherichia coli productora de toxina shiga no O157 que codifica el gen de la enterohemolisina en carne cruda en colombia. Arch. Latinoam. Nutr, 59–67. https://www.alanrevista.org/ediciones/2019/1/art-8/ DOI: https://doi.org/10.37527/2019.69.1.008
  21. Kaushik, P., Anjay, Kumari, S., Dayal, S., & Kumar, S. (2018). Antimicrobial resistance and molecular characterisation of E. coli from poultry in eastern India. Veterinaria Italiana, 54(3), 197–204. https://doi.org/10.12834/VetIt.330.1382.2
  22. Keane, O. M. (2016). Genetic diversity, the virulence gene profile and antimicrobial resistance of clinical mastitis-associated Escherichia coli. Research in Microbiology, 167(8), 678–684. https://doi.org/10.1016/J.RESMIC.2016.06.011 DOI: https://doi.org/10.1016/j.resmic.2016.06.011
  23. Le Strange, K., Markland, S. M., Hoover, D. G., Sharma, M., & Kniel, K. E. (2017). An evaluation of the virulence and adherence properties of avian pathogenic Escherichia coli. One Health, 4, 22–26. https://doi.org/10.1016/j.onehlt.2017.08.001 DOI: https://doi.org/10.1016/j.onehlt.2017.08.001
  24. Li, G; Mohamed, L; Zhao, G; Gao, Y; Kaidi, R; Mustapha, O; Wang, J & Oumouna, K. (2018). Virulence traits of avian pathogenic (APEC) and fecal (AFEC) E. coli isolated from broiler chickens in Algeria. Tropical Animal Health and Production, 50(3), 547–553. https://doi.org/10.1007/S11250-017-1467-5 DOI: https://doi.org/10.1007/s11250-017-1467-5
  25. Marazzato, M., Aleandri, M., Massaro, M. R., Vitanza, L., Conte, A. L., Conte, M. P., Nicoletti, M., Comanducci, A., Goldoni, P., Maurizi, L., Zagaglia, C., & Longhi, C. (2020). Escherichia coli strains of chicken and human origin: Characterization of antibiotic and heavy-metal resistance profiles, phylogenetic grouping, and presence of virulence genetic markers. Research in Veterinary Science, 132, 150–155. https://doi.org/10.1016/J.RVSC.2020.06.012 DOI: https://doi.org/10.1016/j.rvsc.2020.06.012
  26. Márquez, H., Quiroz, I., Miranda, P., Vidales, E., Sánchez, H., & López, A. (2018). Genes de virulencia y grupo filogenético en aislados de Escherichia coli patogénica aviar. Archivos de Medicina, ISSN-e 1698-9465, Vol. 14, No. 1, 2018, 14(1), 2. https://dialnet.unirioja.es/servlet/articulo?codigo=6373537&info=resumen&idioma=ENG
  27. Martín, C., Jimena, C., Sanso, S., & Mariel, A. (2018). Distribución de genes de virulencia en Escherichia coli verotoxigénico O91 de bovinos y alimentos cárnicos.14–34. https://www.ridaa.unicen.edu.ar/xmlui/bitstream/handle/123456789/2027/CHRISTENSEN%2C%20MARTIN.pdf?sequence=1&isAllowed=y
  28. Martínez-Vázquez, A. V., Rivera-Sánchez, G., Lira-Méndez, K., Reyes-López, M. Á., & Bocanegra-García, V. (2018). Prevalence, antimicrobial resistance and virulence genes of Escherichia coli isolated from retail meat in Tamaulipas, Mexico. Journal of Global Antimicrobial Resistance, 14, 266–272. https://doi.org/10.1016/J.JGAR.2018.02.016 DOI: https://doi.org/10.1016/j.jgar.2018.02.016
  29. Millán, Y., Méndez, A., Burguera, M., Pimentel, P., Araque, M., & Ramírez, A. (2018). Determinación de Enterobacterias y detección de genes de virulencia en Escherichia coli aislada en leche cruda. Revista de La Sociedad Venezolana de Microbiología, 38(2), 58–63. http://saber.ucv.ve/ojs/index.php/rev_vm/article/view/16260
  30. Moeinirad, M., Douraghi, M., Foroushani, A. R., Sanikhani, R., & Dallal, M. M. S. (2021). Molecular characterization and prevalence of virulence factor genes of Shiga toxin-producing Escherichia coli (STEC) isolated from diarrheic children. Gene Reports, 25, 101379. https://doi.org/10.1016/j.genrep.2021.101379 DOI: https://doi.org/10.1016/j.genrep.2021.101379
  31. Nüesch-Inderbinen, M., Stevens, M. J., Cernela, N., Müller, A., Biggel, M., & Stephan, R. (2021). Distribution of virulence factors, antimicrobial resistance genes and phylogenetic relatedness among Shiga toxin-producing Escherichia coli serogroup O91 from human infections. International Journal of Medical Microbiology, 311(8), 151541. https://doi.org/10.1016/j.ijmm.2021.151541 DOI: https://doi.org/10.1016/j.ijmm.2021.151541
  32. Pearson, J. S., Giogha, C., Wong Fok Lung, T., & Hartland, E. L. (2016). The Genetics of Enteropathogenic Escherichia coli Virulence. In Annual Review of Genetics (Vol. 50, pp. 493–513). Annual Reviews. https://doi.org/10.1146/annurev-genet-120215-035138 DOI: https://doi.org/10.1146/annurev-genet-120215-035138
  33. Randall, L., Wu, G., Phillips, N., Coldham, N., Mevius, D., & Teale, C. (2016). Virulence genes in bla CTX-M Escherichia coli isolates from chickens and humans. Research in Veterinary Science, 93(1), 23–27. https://doi.org/10.1016/j.rvsc.2016.06.016 DOI: https://doi.org/10.1016/j.rvsc.2011.06.016
  34. Ranjbar, R., Masoudimanesh, M., Dehkordi, F. S., Jonaidi-Jafari, N., & Rahimi, E. (2017). Shiga (Vero)-toxin producing Escherichia coli isolated from the hospital foods virulence factors, o-serogroups and antimicrobial resistance properties. Antimicrobial Resistance and Infection Control, 6(1), 1–11. https://doi.org/10.1186/s13756-016-0163-y DOI: https://doi.org/10.1186/s13756-016-0163-y
  35. Rípodas, A., Fernández, D., & Macho, M. (2017). Investigación de Escherichia Coli productor de toxinas Shiga (STEC) en carnes y derivados cárnicos. Sanidad Militar, 73(3), 147–152. https://doi.org/10.4321/s1887-85712017000300002
  36. Sanchez, A. (2019). Caracterizacion molecular de factores de virulencia y genotipos de Escherichia coli aislada en langostino (litopenaeus vannamei) y camarones de rio (cryphiops caementarius) en terminales pesqueros de Lima metropolitana. [Universidad Peruana Cayetano Heredia]. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://repositorio.upch.edu.pe/handle/20.500.12866/3680
  37. Sarowska, J., Futoma-Koloch, B., Jama-Kmiecik, A., Frej-Madrzak, M., Ksiazczyk, M., Bugla-Ploskonska, G., & Choroszy-Krol, I. (2019). Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. In Gut Pathogens (Vol. 11, Issue 1, pp. 1–16). BioMed Central Ltd. https://doi.org/10.1186/s13099-019-0290-0 DOI: https://doi.org/10.1186/s13099-019-0290-0
  38. Soares, B. D., de Brito, K. C. T., Grassotti, T. T., Filho, H. C. K., de Camargo, T. C. L., Carvalho, D., Dorneles, I. C., Otutumi, L. K., Cavalli, L. S., & de Brito, B. G. (2021). Respiratory microbiota of healthy broilers can act as reservoirs for multidrug-resistant Escherichia coli. Comparative Immunology, Microbiology and Infectious Diseases, 101700. https://doi.org/10.1016/J.CIMID.2021.101700. DOI: https://doi.org/10.1016/j.cimid.2021.101700
  39. Sunde, M., Ramstad, S. N., Rudi, K., Porcellato, D., Ravi, A., Ludvigsen, J., ... & Telke, A. A. (2021). Plasmid-associated antimicrobial resistance and virulence genes in Escherichia coli in a high arctic reindeer subspecies. Journal of Global Antimicrobial Resistance, 26, 317-322. https://doi.org/10.1016/j.jgar.2021.06.003 DOI: https://doi.org/10.1016/j.jgar.2021.06.003
  40. Taha, Z. M., & Yassin, N. A. (2019). Prevalence of diarrheagenic Escherichia coli in animal products in Duhok province, Iraq. Iranian Journal of Veterinary Research, 20(4), 255–262. /pmc/articles/PMC6983314/. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983314/pdf/ijvr-20-255.pdf
  41. Thierry, S. I. L., Gannon, J. E., Jaufeerally-Fakim, Y., & Santchurn, S. J. (2020). Shiga-toxigenic Escherichia coli from animal food sources in Mauritius: Prevalence, serogroup diversity and virulence profiles. International Journal of Food Microbiology, 324. https://doi.org/10.1016/J.IJFOODMICRO.2020.108589 DOI: https://doi.org/10.1016/j.ijfoodmicro.2020.108589
  42. Umpiérrez, A., Ernst, D., Fernández, M., Oliver, M., Casaux, M. L., Caffarena, R. D., Schild, C., Giannitti, F., Fraga, M., & Zunino, P. (2021). Virulence genes of Escherichia coli in diarrheic and healthy calves. Revista Argentina de Microbiología, 53(1), 34–38. https://doi.org/10.1016/J.RAM.2020.04.004 DOI: https://doi.org/10.1016/j.ram.2020.04.004
  43. Varga, C., Brash, M. L., Slavic, D., Boerlin, P., Ouckama, R., Weis, A., Petrik, M., Philippe, C., Barham, M., & Guerin, M. T. (2018). Evaluating Virulence-Associated Genes and Antimicrobial Resistance of Avian Pathogenic Escherichia coli Isolates from Broiler and Broiler Breeder Chickens in Ontario, Canada. Avian Diseases, 62(3), 291–299. https://doi.org/10.1637/11834-032818-Reg.1 DOI: https://doi.org/10.1637/11834-032818-Reg.1
  44. Vidal, R. M., Chamorro, N. L., & Girón, J. A. (2016). Animal Enterotoxigenic Escherichia coli. In M. S. Donnenberg (Ed.), Escherichia Coli in the Americas (Vol. 7, Issue 1, pp. 1–26). ASM PressWashington, DC. https://doi.org/10.1007/978-3-319-45092-6_1 DOI: https://doi.org/10.1007/978-3-319-45092-6_1
  45. Wu, B., Duan, H., Qi, Q., Cai, Y., Zhong, Z., & Chai, T. (2018). Identifying virulence factor genes in E. coli in animal houses and their transmission to outside environments. Journal of Aerosol Science, 117, 189–199. https://doi.org/10.1016/j.jaerosci.2017.11.009 DOI: https://doi.org/10.1016/j.jaerosci.2017.11.009
  46. Yin, L., Li, Q., Wang, Z., Shen, X., Tu, J., Shao, Y., ... & Pan, X. (2021). The Escherichia coli type III secretion system 2 Is involved in the biofilm formation and virulence of avian Pathogenic Escherichia coli. Comparative Immunology, Microbiology and Infectious Diseases, 79, 101722. https://doi.org/10.1016/j.cimid.2021.101722 DOI: https://doi.org/10.1016/j.cimid.2021.101722
  47. Zhang, D., Zhang, Z., Huang, C., Gao, X., Wang, Z., Liu, Y., Tian, C., Hong, W., Niu, S., & Liu, M. (2018). The phylogenetic group, antimicrobial susceptibility, and virulence genes of Escherichia coli from clinical bovine mastitis. Journal of Dairy Science, 101(1), 572–580. https://doi.org/10.3168/jds.2017-13159 DOI: https://doi.org/10.3168/jds.2017-13159
  48. Zhang, S., Chen, S., Rehman, M. U., Yang, H., Yang, Z., Wang, M., Jia, R., Chen, S., Liu, M., Zhu, D., Zhao, X., Wu, Y., Yang, Q., Huan, J., Ou, X., Mao, S., Gao, Q., Sun, D., Tian, B., & Cheng, A. (2021). Distribution and association of antimicrobial resistance and virulence traits in Escherichia coli isolates from healthy waterfowls in Hainan, China. Ecotoxicology and Environmental Safety, 220, 112317. https://doi.org/10.1016/J.ECOENV.2021.112317 DOI: https://doi.org/10.1016/j.ecoenv.2021.112317
  49. Zotta, C. M., Lavayén, S., Nario, F., & Piquín, A. (2016). Detección de Escherichia coli productor de toxina Shiga en vísceras e animales bovinos y pollos destinadas para el consumo humano. Journal of the Selva Andina Research Society, 7(1), 2–9. https://doi.org/10.36610/j.jsars.2016.070100002 DOI: https://doi.org/10.36610/j.jsars.2016.070100002
  50. Zhuge, X., Jiang, M., Tang, F., Sun, Y., Ji, Y., Xue, F., ... & Dai, J. (2019). Avian-source mcr-1-positive Escherichia coli is phylogenetically diverse and shares virulence characteristics with E. coli causing human extra-intestinal infections. Veterinary microbiology, 239, 108483. 10.1016/j.vetmic.2019.108483 DOI: https://doi.org/10.1016/j.vetmic.2019.108483

Descargas

Los datos de descargas todavía no están disponibles.