Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Una revisión a las geometrías de Zariski uno–dimensionales

Resumen

En este artıculo, realizamos una revisión de las geometrías de Zariski de dimensión uno. Comenzamos con una breve retrospectiva de conceptos clave en toria de modelos y su evolución histórica. Luego, introducimos conceptos en geometría algebraica, explorando la intersección con la teoría  de modelos para motivar la teoría de modelos geométrica. Destacamos la Conjetura de tricotomía de Zilber y como la refutación  de Hrushovski condujo a Zilber y Hrushovski a aislar la clase de estructuras donde la conjetura tiene validez, dando origen a las geometrías de Zariski. Concluimos presentando los resultados

obtenidos por Zilber y Hrushovski en los 90s y ofrecemos una revision bibliográfica  actualizada del tema.

PDF

Citas

  1. Hrushovski E. & Zilber B. (1996). Zariski Geometries, Journal of the American Mathematical Society, Vol. 9, No. 1. http://www.jstor.org/stable/2152839.
  2. Hrushovski E. & Zilber B. (1993). Zariski Geo- metries, Bulletin of the American Mathematical Society, Vol. 28, No. 2. https://doi.org/10.1090/ S0273-0979-1993-00380-X.
  3. Marker D. (1998). Zariski geometries. In: Bous- caren E. (eds). Model Theory and Algebraic Geo- metry. Lecture Notes in Mathematics, vol 1696. Sprin- ger, Berlin, Heidelberg, 1998. https://doi.org/10.1007/ 978-3-540-68521-07.
  4. Voevodsky, V. A. (1991) e ́tale topologies of schemes over fields of finite type over Q. Mathematics of the URSS-Izvestiya 37.3:511 pgs
  5. Zilber B. (2014). A curve and its abstract Jacobian, Int. Math. Res. Not. IMRN. 5. 1425–1439.
  6. F. A. Bogomolov, M. Korotaev & Yu. Tschinkel. (2010). A Torelli theorem for curves over finite fields, Pure Appl. Math. Q., 1, pp. 245-294. https://doi.org/ 10.4310/PAMQ.2010.v6.n1.a7.
  7. Kollar, Janos. et al. (2021) Topological reconstruction theorems for varieties. Preprint: arXiv:2003.04847v3
  8. Pillay, A. (1996). Review on Hrushovski Ehud and Zil- ber Boris. Zariski geometries, Journal of the American Mathematical Society, vol. 9, pp. 1-56. The Journal of Symbolic Logic, 64, pp 906-908 doi:10.2307/2586511.
  9. Hrushovski E. (1993). A new strongly minimal set in Annals of Pure and Applied Logic 62(2).:147-166. https://doi.org/10.1016/0168-0072(93).90171-9.
  10. Villaveces A. (2011) La Tricotom ́ıa de Zilber: una breve introduccio ́n geome ́trica. EVM.
  11. Pinzon S. Completaciones y especializacio- nes de geometr ́ıas de Zariski. (2016). MSc thesis, Departamento de Matemáticas, Universidad de los Andes, Bogota-Colombia. https://repositorio.uniandes.edu.co/bitstream/handle/ 1992/13959/u754351.pdf?sequence=1&isAllowed=y.
  12. Marker D. (2002). Model Theory: an introduction. Springer-Verlag GTM, New York. https://doi.org/10. 1007/b98860.
  13. Chang C. and Keisler H. (1973). Model Theory, Dover Books on Mathematics reprinting, 2013.
  14. Casanovas E. The recent History of Model Theory. (Universidad de Barcelona.) http://www.ub.edu/ modeltheory/documentos/HistoryMT.pdf.
  15. Marjca A. & Toffalori C. (2003). A guide to classical and Mordern Model Theory. Kluwer Acaemic Press. https://doi.org/10.1007/978-94-007-0812-9.
  16. Aschenbrenner M. https://www.math.ucla.edu/ ∼matthias/223m.1.09s/.
  17. Tent K. & Ziegler M. (2012). A Course in Model Theory. Lecture Notes in Logic, vol. 40. Cambridge University Press, United Kingdom.
  18. Goedel K. (1930). Die Vollsta ̈ndigkeit der Axiome des logischen Funktionenkalku ̈ls. Monatshefte fu ̈r Mathe- matik (in German). 37 (1): 349-360. doi:10.1007/ BF01696781.
  19. Loewenheim L. (1915). U ̈ber Moglichkeiten im Relativkalkuel. Math. Ann. 76, 447-470. https://doi.org/10. 1007/BF01458217.
  20. Koenig D.(1927).Ueber eine Schlussweise aus dem Endlichen ins unendliche , Acta Sci Math (Szeged) (In German) (3(2-3).).: 121-130.
  21. Skolem Th. (1920). Logisch-kombinatorische Unter- suchungen u ̈ber die Erfu ̈llbarkeit oder Beweisbar- keit mathematischer Sa ̈tze nebst einem Theoreme u ̈ber dichte Mengen, Videnskapsselskapet Skrifter, I. Matematisk-naturvidenskabelig Klasse, 4: 1-36.
  22. Maltsev A. (1936). Untersuchungen aus dem Gebiete der mathematischen Logik, Matematicheskii Sbornik, Novaya Seriya, 1(43). (3).: 323-336. http://mi.mathnet. ru/msb5392.
  23. Zilber B. (2010). Zariski Geometries: Geometry from the Logicians point of view. CUP. London Mathemati- cal Society.
  24. Vaught R. (1954). Applications to the Lo ̈wenheim- Skolem-Tarski theorem to problems of completeness and decidability, Indagationes Mathematicae, 16: 467- 472, MR 0063993.
  25. Los ́ Jerzy (1955). Quelques remarques, the ́ore`mes et proble`mes sur les classes de ́finissables d’alge`bres. In: Mathematical interpretation of formal systems, pp. 98- 113. North-Holland Publishing Co., Amsterdam.
  26. MorleyM.(1965).CategoricityinPower,Transactions of the American Mathematical Society, Vol. 114, No. 2, 114 (2).: 514-538. https://doi.org/10.2307/1994188.
  27. Shelah S. (1974). Categoricity of uncountable theories, Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math., Vol. XXV, Univ. of California, Berkeley, Calif., 1971). Proceedings of Symposia in Pure Mathe- matics, 25, Providence, R.I.: American Mathematical Society, pp. 187-203.
  28. Hartshorne R. (2006). Algebraic Geometry, Springer Graduated Texts in Mathematics 52. https://doi.org/10. 1007/978-1-4757-3849-0.
  29. Grothendieck A. (1966). e ́le ́ments de ge ́ome ́trie alge ́brique. IV. e ́tude locale des sche ́mas et des morphismes de sche ́mas. III., Inst. Hautes e ́tudes Sci. Publ. Math., 28. http://www.numdam.org/item/ PMIHES 1966 28 5 0/.
  30. Ax J. (1968). The elementary theory of finite fields, Annals of Mathematics, Second Series, 88 (2).: 239- 271, doi:10.2307/1970573, JSTOR 1970573.
  31. Hilbert D. (1893). über die vollen Invariantensysteme. Math. Ann. 42, pp. 313-373. https://doi.org/10.1007/BF01444162.
  32. Robinson A. (1963). Introduction to model theory and the metamathematics of algebra, North-Holland, Amsterdam. MR 26:4911.
  33. Abramovich D. & Voloch F. (1992). Towards a proof of the Mordell-Lang conjecture in characteristic p, Int. Math. Res. Not. 2, 103-115. https://doi.org/10.1155/ S1073792892000126.
  34. Hrushovski E. (1996). The Mordell-Lang conjecture for function fields, JAMS 9, 667-690. https://doi.org/ 10.1090/S0894-0347-96-00202-0.
  35. Bouscaren E. (1998). Proof of the Mordell-Lang con- jecture for function fields. In: Bouscaren E. (eds). Mo- del Theory and Algebraic Geometry. Lecture Notes in Mathematics, vol 1696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68521-0 10.
  36. Abdolahzadi R. & Zilber B. (2020). Definability, in- terpretations and e ́tale fundamental groups. arXiv: 1906.05052[math.LO].
  37. Pillay A. (1983). An Introduction to Stability Theory. Dover Books on Mathematics reprinting 2008.
  38. Baldwin, J. T. & A. H. Lachlan. (1971). On Strongly Minimal Sets. The Journal of Symbolic Logic, vol. 36, no. 1, pp. 79-96. https://doi.org/10.2307/2271517.
  39. Zilber B. (1984). The structure of models of uncoun- tably categorical theories, Proc. Internat. Congr. Math. (Warsaw, 1983). vol. 1, North-Holland, Amsterdam, pp. 359-368.
  40. AlbalahiA.(2019).ZariskiGeometriesonStronglyMi- nimal Unars. PhD thesis at University of East Anglia. https://ueaeprints.uea.ac.uk/id/eprint/72730.
  41. ZilberB.(1993).Modeltheoryandalgebraicgeometry, In: Proc. 10th Easter Conference on Model Theory (wendisch Rietz, 1993). Seminarberichte 93, Humboldt Univ, Berlin, 93-117.
  42. Smith L. (2008). Toric Varieties as Analytic Zariski Structures, PhD Thesis, University of Oxford.
  43. Gavrilovich, M. (2012). Covers of Abelian varieties as analytic Zariski structures. Annals of Pure and Applied Logic, 163(11), 1524-1548.
  44. KangasK.(2018).FindinggroupsinZariski-likestruc- tures. PhD thesis at Departament of Mathematics and Statistics at University f Helsinki. arXiv:1404.6811v1.
  45. Kangas K. (2017). Finding a field in a Zariski-like structure. arXiv:1502.03225v3[math.LO].[42] Smith L. (2008). Toric Varieties as Analytic Zariski Structures, PhD Thesis, University of Oxford.
  46. Solanki SolankiV.(2011).Zariski Structures in Non-commutative Algebraic Geometry and Representation Theory. PhD Thesis, University of Oxford. V. (2011). Zariski Structures in Non-commutative Algebraic Geo- metry and Representation Theory. PhD Thesis, University of Oxford.
  47. Lang S. (1955). Introduction to Algebraic Geometry. Dover Books on Mathematics reprinting, 2019.
  48. Weil A. (1946). Foundations of Algebraic Geometry. American Mathematical Society Colloquium Publica- tions, 29, Providence, R.I.: American Mathematical Society, MR 0023093.
  49. Onshuus A. & Zilber B. (2011). The first order theory of the universal specializations, available at http://www.logique.jussieu.fr/modnet/Publications/ Preprint%20server/papers/355/355.pdf.
  50. Efem U. (2013). Specializations and Algebraically clo- sed fields. arXiv:1304.3699v2[math.LO].
  51. Efem Ucializations. (2017). The Theory of Spe- PhD thesis, University of https://ora.ox.ac.uk/objects/uuid:
  52. Oxford. 3c14ca5d-c3d7-4233-93d3-81a4e20c4d1f.
  53. Efem, U., and Zilber, B. (2023). On the Theory of Specialisations of Regular Covers of Zariski Structures. arXiv preprint arXiv:2302.08542.
  54. Sustretov D. (2012). Non-algebraic Zariski geometries, PhD Thesis, University of Oxford.
  55. Zilber B. (2008). A class of quantum Zariski geome- tries. In Z. Chatzidakis, H. Macpherson, A. Pillay, and A. Wilkie, editors, Model Theory with applications to algebra and analysis, I and II. Cambridge University Press.
  56. RuizC. Zariski geometries and commutative Algebraic geometry. Manuscript.
  57. Zanussi, M. (2021). Zariski Geometries and Quantum Mechanics. PhD thesis. Boise State University.
  58. Torres J. (2020) Understanding Zariski geometries. MSc Thesis. Universidad de Antioquia. Colombia.

Descargas

Los datos de descargas todavía no están disponibles.