Hidrogenación electrocatalítica de oleato de metilo y linoleato de metilo con titanio recubierto con sistemas tipo Ni/SnO(x). (Electrocatalytic Hydrogenation of Methyl Oleate and Methyl Linoleate by Titanium covered with by /Ni/SnO(x) type Systems.)

Contenido principal del artículo

Autores

A. S. Salinas
J. V. Gutiérrez
F. E. Larmat G.
A. E. Ramírez-Sanabria

Resumen

Resumen

Expone los resultados de la hidrogenación electrocatalítica (HEC) de los ésteres metílicos de los ácidos
linoleico y oleico. El primer parámetro estudiado fue el potencial de electrólisis en el cual se genera
el hidrógeno activo mediante voltametría cíclica, estableciéndose en -600 mV. Los electrocatalizadores
empleados a base de titanio recubiertos con sistemas de níquel soportado sobre óxidos de estaño (II) y
(IV) mostraron diferente comportamiento hacia los diversos substratos estudiados. El sistema con óxido de estaño (II) fue más activo hacia la hidrogenación de oleato de metilo, y el sistema con óxido de estaño (IV) resultó más activo frente a la hidrogenación de linoleato de metilo.

 

Abstract

This paper presents the Electrocatalytic Hydrogenation (ECH) of methyl oleate and methyl linoleate results electrolysis potential by which active hydrogen is producedby cyclic voltametry, was established at -600 mV. The electrocatalysts used were based on Titaniumcovered with nickel systems supported over tin oxide (II) and (IV) showed dierent behavior towards the diverse substrata studied. Tin oxide (II) system was most active towards the methyl oleate hydrogenation, whereas, tin oxide (IV) system was most active to methyl linoleate hydrogenation.


Palabras clave:

Detalles del artículo

Referencias

[1] C. M. Cirtiu, A. B. Wittmeyer, and H. Menard, “Comparative study of catalytic and electrocatalytic hydrogenation of benzophenone”, Catalysis Communications, vol. 8, pp. 751-754, 2007.

[2] R. C. Z. Lofrano, J. M. Madurro, L. M. Abrantes, and J. R. Romero, “Electrocatalytic hydrogenation of carbonilic compounds using an
electrode with platinum particles dispersed in films of poly-[allyl ether p-(2-aminoethyl) phenol] co-polimerized with allyl phenyl ether”,
Journal of Molecular Catalysis A: Chemical. vol. 218, pp. 73-79, 2004.

[3] Mondal & Lalvani (2003a),

[4] Mondal & Lalvani (2003b)

[5] J. Lessard, “Reduction of alkenes and conjugated alkenes”, J. R. Sowa. Catalysis of Organic Reaction, Ed., Taylor y Francis Group, Boca
Raton, pp. 3-18, 2005.

[6] Pintauro et al.

[7] An et al. (1998)

[8] Yusem et al. (1996)

[9] Y. Pouilloux, A. Piccirilli, and J. Barrault, “Selective hydrogenation into oleyl alcohol of methyl oleate in the presence of Ru-Sn/Al2O3 catalysts”, Journal of Molecular Catalysis A: Chemical, vol. 108, pp.161-166, 1996.

[10] C. Ararat. “Sintesis de SnO2 por (MPC) y su uso como catalizador o soporte catalitico de Sn, Ni o Sn-Ni en reacciones de transesterificación del aceite de palma”, Trabajo de grado, Universidad del Cauca, 2005.

[11] H. Ilikti, N. Rekik, and M. Thomalla. “Electrocatalytic hydrogenation of alkyl-substituted phenols in aqueous solutions at a Raney nickel electrode in the presence of a nonmicelleforming cationic surfactant”. Journal of Applied Electrochemistry. vol. 34, pp. 127-136, 2004.

[12] J. J. G. da Silva, M. O. F. Goulart, and M. Navarro, “Electrocatalytic hidrogenation of diethyl fumarate. A simple system development”, Tetrahedron, vol. 55, pp. 7405-7410, 1999.

[13] D. S. Santana, M. V. F. Lima, J. R. R. Daniel, and M. Navarro, “Electrocatalytic hydrogenation of organic compounds using current density gradient and sacrificial anode of nickel”, Tetrahedron Letters, vol. 44, pp. 4725-4727, 2003.

Descargas

La descarga de datos todavía no está disponible.