Álgebras de Hopf y extensiones PBW torcidas

Hopf algebras and skew PBW extensions

Contenido principal del artículo

Luis Alfonso Salcedo Plazas

Resumen

En este artículo se relacionan algunas estructuras de álgebra de Hopf sobre extensiones de Ore y extensiones PBW torcidas de un álgebra de Hopf. Estas relaciones son ilustradas con ejemplos. También se demuestr que las extensiones Hopf Ore y las extensiones Hopf Ore generalizadas son extensiones PBW torcidas de Hopf.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

[1] A. Bell and K. Goodearl, “Uniform rankover differential operator rings and Poincaré-Birkhoff-Witt extensions”, Pacific J. Math., vol.131, no. 1, pp. 13-37, 1988.

[2] K.A. Brown, S. O’Hagan, J.J. Zhang, G.Zhuang, “Connected Hopf algebras and iterated Ore extensions”, J. Pure Appl. Algebra,vol. 219, no. 6, pp. 2405-2433, 2015.

[3] C. Gallego, O. Lezama, “Gröbner bases forideals of σ -PBW extensions”, Comm. Algebra,vol. 39, pp. 50-75, 2011.

[4] P. Gilmartin, “Connected Hopf algebras of finite Gelfand-Kirillov dimension”, PhD thesis,University of Glasgow, 2016.

[5] J. Gómez, H. Suárez, “Algunas propiedades homológicas del plano de Jordan”, Ciencia en Desarrollo, vol. 9, no. 2, pp. 69-82, 2018.

[6] N.R. González, Y.P. Suárez, “Ideales en el Anillo de Polinomios Torcidos R[x; σ, δ ]”, Ciencia en Desarrollo, vol. 5, no. 1, pp. 31-37, 2014.

[7] M. Hazewinkel, N. Gubareni and V. Kirichenko, “Algebras, Rings and Modules: Lie Algebras and Hopf Algebras”, Mathematical survey and monographas 168, AMS (2010).

[8] G. Karaali, “On Hopf algebras and their generalizations”, Comm. Algebra, vol. 36, no. 12, pp. 4341-4367, 2008.

[9] O. Lezama, E. Latorre, “Non-commutative algebraic geometry of semi-graded rings”, Internat. J. Algebra Comput., vol. 27, no. 4, pp. 361-389, 2017.

[10] A.N. Panov, “Ore extensions of Hopf algebras”, Math. Notes, vol. 74, no. 3, pp. 401-410, 2003.

[11] R. Ray, “Introduction to Hopf algebras”. Washington: University Gonzaga, 2004. Disponible en: http://web02.gonzaga.edu/faculty/rayr/SpokaneColloquium.pdf (20/12/2018, last visit).

[12] A. Reyes, H. Suárez, “A notion of compatibility for Armendariz and Baer properties over skew PBW extensions”, Rev. Un. Mat. Argentina, vol. 59, no. 1, pp. 157-178, 2018.

[13] A. Reyes, H. Suárez, “PBW bases for some 3-dimensional skew polynomial algebras”, Far East J. Math. Sci. (FJMS), vol. 101, no. 6, pp. 1207-1228, 2017.

[14] A. Reyes, H. Suárez, “PBW extensions of skew Armendariz rings”, Adv. Appl. Clifford Algebr., vol. 27, pp. 3197-3224, 2017.

[15] A. Reyes and H. Suárez, “Enveloping algebra and skew Calabi-Yau algebras over skew Poincaré-Birkhoff-Witt extensions”, Far East J. Math. Sci. (FJMS), vol. 102, no. 2, pp. 373-397, 2017.

[16] A. Reyes and H. Suárez, “Bases for quantum algebras and skew Poincaré-Birkhoff-Witt extensions”, Momento, vol. 54, no. 1, pp. 54-75, 2017.

[17] A. Reyes and H. Suárez, “PBW bases for some 3-dimensional skew polynomial algebras”, Far East J. Math. Sci. (FJMS), vol. 101, no. 6, pp. 1207-1228, 2017.

[18] A. Reyes, H. Suárez, “Some remarks about the cyclic homology of skew PBW extensions”, Ciencia en Desarrollo, vol. 7, no. 2, pp. 99-107, 2016.

[19] M. Ribeiro, “Hopf Algebras and Ore Extensions”, Dissertação Mestrado em Matemática, Universidade do Porto, 2016.

[20] H. Suárez, “Koszulity for graded skew PBW extensions”, Comm. Algebra, vol. 45, no. 10, pp. 4569-4580, 2017.

[21] H. Suárez, O. Lezama, A. Reyes, “Some Relations between N-Koszul, Artin-Schelter Regular and Calabi-Yau with Skew PBW Extensions”, Ciencia en Desarrollo, vol. 6, no. 2, pp. 205-213, 2015.

[22] H. Suárez, O. Lezama, A. Reyes, “Calabi-Yau property for graded skew PBW extensions”, Rev. Colombiana Mat., vol. 51, no. 2, pp. 221- 238, 2017.

[23] H. Suárez, A. Reyes, “Koszulity for skew PBW extension over fields”, JP J. Algebra Number Theory Appl., vol. 39, no. 2, pp. 181-203, 2017.

[24] L. You, Z. Wang, H.X. Chen, “Generalized Hopf Ore extensions”, J. Algebra, vol. 508, pp. 390-417, 2018.

[25] D.-G. Wang, J.J. Zhang and G. Zhuang, “Connected Hopf algebras of Gelfand-Kirillov dimension four”, Trans. Amer. Math. Soc., vol.376, no. 8, pp. 5597-5632, 2015.

[26] G. Zhuang, “Properties of pointed and connected Hopf algebras of finite Gelfand-Kirillov dimension”, J. London Math. Soc., vol. 87, no. 2, 877-898, 2013..

Citado por: