Hopf algebras and skew PBW extensions

Contenido principal del artículo

Autores

Luis Alfonso Salcedo Plazas

Resumen

En este artículo se relacionan algunas estructuras de álgebra de Hopf sobre extensiones de Ore y extensiones
PBW torcidas de un álgebra de Hopf. Estas relaciones son ilustradas con ejemplos. También se demuestra
que las extensiones Hopf Ore y las extensiones Hopf Ore generalizadas son extensiones PBW torcidas de
Hopf.

Palabras clave:

Detalles del artículo

Referencias

[1] A. Bell and K. Goodearl, “Uniform rank
over differential operator rings and Poincaré-
Birkhoff-Witt extensions”, Pacific J. Math., vol.
131, no. 1, pp. 13-37, 1988.
[2] K.A. Brown, S. O’Hagan, J.J. Zhang, G.
Zhuang, “Connected Hopf algebras and iterated
Ore extensions”, J. Pure Appl. Algebra,
vol. 219, no. 6, pp. 2405-2433, 2015.
[3] C. Gallego, O. Lezama, “Gröbner bases for
ideals of s-PBW extensions”, Comm. Algebra,
vol. 39, pp. 50-75, 2011.
[4] P. Gilmartin, Connected Hopf algebras of finite
Gelfand-Kirillov dimension, PhD thesis,
University of Glasgow, 2016.
[5] J. Gómez, H. Suárez, “Algunas propiedades
homológicas del plano de Jordan”, Ciencia en
Desarrollo, vol. 9, no. 2, pp. 69-82, 2018.
[6] N.R. González, Y.P. Suárez, “Ideales en el
Anillo de Polinomios Torcidos R[x;s;d]",
Ciencia en Desarrollo, vol. 5, no. 1, pp. 31-
37, 2014.
[7] M. Hazewinkel, N. Gubareni and V.
Kirichenko, Algebras, Rings and Modules:
Lie Algebras and Hopf Algebras,
Mathematical survey and monographas 168,
AMS (2010).
[8] G. Karaali, “On Hopf algebras and their generalizations”,
Comm. Algebra, vol. 36, no. 12,
pp. 4341-4367, 2008.
[9] O. Lezama, E. Latorre, “Non-commutative algebraic
geometry of semi-graded rings”, Internat.
J. Algebra Comput., vol. 27, no. 4, pp.
361-389, 2017.
[10] A.N. Panov, “Ore extensions of Hopf algebras”,
Math. Notes, vol. 74, no. 3, pp. 401-410, 2003.
Hopf algebras and skew PBW extensions
[11] R. Ray, “Introduction to Hopf algebras”,
[online]. Washington: University
Gonzaga, 2004. Disponible en:
http://web02.gonzaga.edu/faculty/rayr/
SpokaneColloquium.pdf (20/12/2018, last
visit).
[12] A. Reyes, H. Suárez, “A notion of compatibility
for Armendariz and Baer properties over skew
PBW extensions", Rev. Un. Mat. Argentina, vol.
59, no. 1, pp. 157-178, 2018.
[13] A. Reyes, H. Suárez, “PBW bases for some
3-dimensional skew polynomial algebras", Far
East J. Math. Sci. (FJMS), vol. 101, no. 6, pp.
1207-1228, 2017.
[14] A. Reyes, H. Suárez, “PBW extensions of skew
Armendariz rings", Adv. Appl. Clifford Algebr.,
vol. 27, pp. 3197-3224, 2017.
[15] A. Reyes and H. Suárez, “Enveloping algebra
and skew Calabi-Yau algebras over skew
Poincaré-Birkhoff-Witt extensions", Far East J.
Math. Sci. (FJMS), vol. 102, no. 2, pp. 373-397,
2017.
[16] A. Reyes and H. Suárez, “Bases for quantum
algebras and skew Poincaré-Birkhoff-Witt extensions",
Momento, vol. 54, no. 1, pp. 54-75,
2017.
[17] A. Reyes and H. Suárez, “PBW bases for some
3-dimensional skew polynomial algebras", Far
East J. Math. Sci. (FJMS), vol. 101, no. 6, pp.
1207-1228, 2017.
[18] A. Reyes, H. Suárez, “Some remarks about
the cyclic homology of skew PBW extensions",
Ciencia en Desarrollo, vol. 7, no. 2, pp. 99-107,
2016.
[19] M. Ribeiro, Hopf Algebras and Ore Extensions,
Dissertação Mestrado em Matemática, Universidade
do Porto, 2016.
[20] H. Suárez, “Koszulity for graded skew PBW
extensions”, Comm. Algebra, vol. 45, no. 10,
pp. 4569-4580, 2017.
[21] H. Suárez, O. Lezama, A. Reyes, “Some Relations
between N-Koszul, Artin-Schelter Regular
and Calabi-Yau with Skew PBW Extensions”,
Ciencia en Desarrollo, vol. 6, no. 2, pp.
205-213, 2015.
[22] H. Suárez, O. Lezama, A. Reyes, “Calabi-Yau
property for graded skew PBW extensions”,
Rev. Colombiana Mat., vol. 51, no. 2, pp. 221-
238, 2017.
[23] H. Suárez, A. Reyes, “Koszulity for skew PBW
extension over fields”, JP J. Algebra Number
Theory Appl., vol. 39, no. 2, pp. 181-203, 2017.
[24] L. You, Z. Wang, H.X. Chen, “Generalized
Hopf Ore extensions”, J. Algebra, vol. 508, pp.
390-417, 2018.
[25] D.-G. Wang, J.J. Zhang and G. Zhuang,
“Connected Hopf algebras of Gelfand-
Kirillov dimension four”, Trans. Amer. Math.
Soc., vol.376, no. 8, pp. 5597-5632, 2015
arXiv:1302.2270v1 [math.RA]
[26] G. Zhuang, “Properties of pointed and connected
Hopf algebras of finite Gelfand-Kirillov
dimension”, J. London Math. Soc., vol. 87, no.
2, 877-898, 2013.

Descargas

La descarga de datos todavía no está disponible.