Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Andamios eletrohilados de poli(ɛ-caprolactona) /colágeno con uso potencial en regeneración de tejido cutáneo

Resumen

Dentro de los tratamientos actuales para la reparación de las lesiones en piel se encuentran los autoinjertos, los aloinjertos ylos sustitutos dérmicos biosintéticos. Sin embargo, solo la terapia con autoinjerto es la que da mejores resultados y está sujeta al área de piel afectada en el paciente quemado, los demás tratamientos solo dan cobertura temporal a la herida, evidenciando la necesidad de generar estructuras que además de proteger la herida posean funciones biológicas que contribuyan a los procesos de reparación o regeneración de la piel. Con el fin de  generar un apósito que reúna estas características, se fabricaron andamios de poli(ℇ-caprolactona) /Colágeno tipo I por electrohilado como posibles sustitutos dérmicos. Estos andamios se caracterizaron porSEM, ángulo de contacto, ATR-FTIR, TGA, DSC y se determinó su biocompatibilidad a partir de laadhesión y proliferación decélulas estromales mesenquimales de gelatina de Wharton (CEM-GW). Se encontró que la presencia de colágeno en los andamios disminuye el diámetro de fibra y mejora la hidrofilicidad favoreciendo los procesos de adhesión de las CEM-GW. Además, se demostró que no es necesario utilizar altas cantidades de colágeno para obtener un andamio con características fisicoquímicas y biológicas favorables.

Palabras clave

Sustitutos dérmicos, CEM-GW, lesiones cutáneas, biocompatibilidad.

PDF

Referencias

[1] S. Böttcher-Haberzeth, T. Biedermann, and E. Reichmann, "Tissue engineering of skin," Burns, vol. 36, pp. 450-460, 2010.

[2] F. J. O'brien, "Biomaterials & scaffolds for tissue engineering," Materials today, vol. 14, pp. 88-95, 2011.

[3] S. E. Wolf, J. K. Rose, M. H. Desai, J. P. Mileski, R. E. Barrow, and D. N. Herndon, "Mortality determinants in massive pediatric burns. An analysis of 103 children with> or= 80% TBSA burns (> or= 70% full-thickness)," Annals of surgery, vol. 225, p. 554, 1997.

[4] J. W. Su, D. P. Mason, S. C. Murthy, and T. W. Rice, "Closure of a large tracheoesophageal fistula using AlloDerm," The Journal of thoracic and cardiovascular surgery, vol. 135, pp. 706-707, 2008.

[5] B. S. Atiyeh and M. Costagliola, "Cultured epithelial autograft (CEA) in burn treatment: three decades later," Burns, vol. 33, pp. 405-413, 2007.

[6] V. F. Segers and R. T. Lee, "Stem-cell therapy for cardiac disease," Nature, vol. 451, p. 937, 2008.

[7] A. Zajicova, K. Pokorna, A. Lencova, M. Krulova, E. Svobodova, S. Kubinova, et al., "Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds," Cell transplantation, vol. 19, pp. 1281-1290, 2010.

[8] Y. Tabata, "Biomaterial technology for tissue engineering applications," Journal of the Royal Society interface, vol. 6, pp. S311-S324, 2009.

[9] W. M. Saltzman and W. L. Olbricht, "Building drug delivery into tissue engineering design," Nature Reviews Drug Discovery, vol. 1, p. 177, 2002.

[10] H. Naderi, M. M. Matin, and A. R. Bahrami, "Critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems," Journal of biomaterials applications, vol. 26, pp. 383-417, 2011.

[11] K. Y. Lee and D. J. Mooney, "Hydrogels for tissue engineering," Chemical reviews, vol. 101, pp. 1869-1880, 2001.

[12] D. W. Hutmacher, "Scaffolds in tissue engineering bone and cartilage," in The Biomaterials: Silver Jubilee Compendium, ed: Elsevier, 2000, pp. 175-189.

[13] J. Lannutti, D. Reneker, T. Ma, D. Tomasko, and D. Farson, "Electrospinning for tissue engineering scaffolds," Materials Science and Engineering: C, vol. 27, pp. 504-509, 2007.

[14] W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, "Electrospun nanofibrous structure: a novel scaffold for tissue engineering," Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, vol. 60, pp. 613-621, 2002.

[15] W. Gamboa, O. Mantilla, V. Castillo, F. C. de Colombia, and G. de Bioingeniería, "PRODUCCIÓN DE MICRO Y NANO FIBRAS A PARTIR DE LA TÉCNICA “ELECTROSPINNING” PARA APLICACIONES FARMACOLÓGICAS," in Memorias del VII Congreso de la Sociedad Cubana de Bioingeniería, 2007.

[16] Y. Luu, K. Kim, B. Hsiao, B. Chu, and M. Hadjiargyrou, "Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers," Journal of controlled release, vol. 89, pp. 341-353, 2003.

[17] X. Xu, Q. Yang, Y. Wang, H. Yu, X. Chen, and X. Jing, "Biodegradable electrospun poly (L-lactide) fibers containing antibacterial silver nanoparticles," European polymer journal, vol. 42, pp. 2081-2087, 2006.

[18] J. Y. Lee, C. A. Bashur, A. S. Goldstein, and C. E. Schmidt, "Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications," Biomaterials, vol. 30, pp. 4325-4335, 2009.

[19] A. Cipitria, A. Skelton, T. Dargaville, P. Dalton, and D. Hutmacher, "Design, fabrication and characterization of PCL electrospun scaffolds—a review," Journal of Materials Chemistry, vol. 21, pp. 9419-9453, 2011.

[20] L. Li, S. Ding, and C. Zhou, "Preparation and degradation of PLA/chitosan composite materials," Journal of applied polymer science, vol. 91, pp. 274-277, 2004.

[21] A.-M. Haaparanta, E. Järvinen, I. F. Cengiz, V. Ellä, H. T. Kokkonen, I. Kiviranta, et al., "Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering," Journal of Materials Science: Materials in Medicine, vol. 25, pp. 1129-1136, 2014.

[22] B. W. Tillman, S. K. Yazdani, S. J. Lee, R. L. Geary, A. Atala, and J. J. Yoo, "The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction," Biomaterials, vol. 30, pp. 583-588, 2009.

[23] Y. Zhang, J. Venugopal, Z.-M. Huang, C. Lim, and S. Ramakrishna, "Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts," Biomacromolecules, vol. 6, pp. 2583-2589, 2005.

[24] P. X. Ma, "Biomimetic materials for tissue engineering," Advanced drug delivery reviews, vol. 60, pp. 184-198, 2008.

[25] E. Abdelrazek, A. Hezma, A. El-Khodary, and A. Elzayat, "Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend," Egyptian Journal of Basic and Applied Sciences, vol. 3, pp. 10-15, 2016.

[26] V. Y. Chakrapani, A. Gnanamani, V. Giridev, M. Madhusoothanan, and G. Sekaran, "Electrospinning of type I collagen and PCL nanofibers using acetic acid," Journal of Applied Polymer Science, vol. 125, pp. 3221-3227, 2012.

[27] S. Ramakrishna, An introduction to electrospinning and nanofibers: World Scientific, 2005.

[28] S. Gautam, C.-F. Chou, A. K. Dinda, P. D. Potdar, and N. C. Mishra, "Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering," Materials Science and Engineering: C, vol. 34, pp. 402-409, 2014.

[29] Y. M. Ju, J. San Choi, A. Atala, J. J. Yoo, and S. J. Lee, "Bilayered scaffold for engineering cellularized blood vessels," Biomaterials, vol. 31, pp. 4313-4321, 2010.

[30] E. D. Hay, Cell biology of extracellular matrix: Springer Science & Business Media, 2013.

[31] K. Ren, Y. Wang, T. Sun, W. Yue, and H. Zhang, "Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes," Materials Science and Engineering: C, vol. 78, pp. 324-332, 2017.

[32] Z. P. Rad, J. Mokhtari, and M. Abbasi, "Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering," Materials Science and Engineering: C, vol. 93, pp. 356-366, 2018.

[33] S. Surucu and H. T. Sasmazel, "Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds," International journal of biological macromolecules, vol. 92, pp. 321-328, 2016.

[34] K. Ghosal, A. Manakhov, L. Zajíčková, and S. Thomas, "Structural and surface compatibility study of modified electrospun poly (ε-caprolactone)(PCL) composites for skin tissue engineering," Aaps Pharmscitech, vol. 18, pp. 72-81, 2017.

[35] D. Kołbuk, P. Sajkiewicz, K. Maniura-Weber, and G. Fortunato, "Structure and morphology of electrospun polycaprolactone/gelatine nanofibres," European Polymer Journal, vol. 49, pp. 2052-2061, 2013.

[36] F. Pati, B. Adhikari, and S. Dhara, "Isolation and characterization of fish scale collagen of higher thermal stability," Bioresource technology, vol. 101, pp. 3737-3742, 2010.

[37] V. Speranza, A. Sorrentino, F. De Santis, and R. Pantani, "Characterization of the polycaprolactone melt crystallization: complementary optical microscopy, DSC, and AFM studies," The Scientific World Journal, vol. 2014, 2014.

[38] V. Speranza, A. Sorrentino, F. De Santis, and R. Pantani, "Characterization of the polycaprolactone melt crystallization: complementary optical microscopy, DSC, and AFM studies [Internet]. Sci. World J. 2014 [cited 2018 Mar 4],"

[39] Z. Chen, P. Wang, B. Wei, X. Mo, and F. Cui, "Electrospun collagen–chitosan nanofiber: A biomimetic extracellular matrix for endothelial cell and smooth muscle cell," Acta Biomaterialia, vol. 6, pp. 372-382, 2010.

[40] E. M. Harnett, J. Alderman, and T. Wood, "The surface energy of various biomaterials coated with adhesion molecules used in cell culture," Colloids and surfaces B: Biointerfaces, vol. 55, pp. 90-97, 2007.

[41] E. Dawson, G. Mapili, K. Erickson, S. Taqvi, and K. Roy, "Biomaterials for stem cell differentiation," Advanced drug delivery reviews, vol. 60, pp. 215-228, 2008.

[42] Z. Ruszczak, "Effect of collagen matrices on dermal wound healing," Advanced drug delivery reviews, vol. 55, pp. 1595-1611, 2003.

[43] S. Chattopadhyay and R. T. Raines, "Review collagen‐based biomaterials for wound healing," Biopolymers, vol. 101, pp. 821-833, 2014.

[44] J. Dulnik, P. Denis, P. Sajkiewicz, D. Kołbuk, and E. Choińska, "Biodegradation of bicomponent PCL/gelatin and PCL/collagen nanofibers electrospun from alternative solvent system," Polymer Degradation and Stability, vol. 130, pp. 10-21, 2016.

[45] N.-T. Dai, M. Williamson, N. Khammo, E. Adams, and A. Coombes, "Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin," Biomaterials, vol. 25, pp. 4263-4271, 2004.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a