Aprovechamiento De Biomasa Y Residuos Agrícolas En La Producción De Moléculas Plataforma: Ácido Levulínico Y Derivados
Resumen
En este artículo de revisión se describe la importancia de una molécula plataforma obtenida a partir de biomasa: el ácido levulínico. El mismo y sus derivados representan una fuente para la obtención de productos renovables que pueden ser sustitutos sostenibles de los ya conocidos y que se obtienen a partir de derivados del petróleo. Inicialmente, se describen algunos principios de la Química asociados a la sostenibilidad, posteriormente se analiza la forma de generar moléculas plataforma a partir de biomasa, particularmente se destaca el ácido levulínico el cual puede obtenerse por procesos térmico-hidrolíticos de biomasa vegetal y en particular de residuos agrícolas. Se describen además algunos ejemplos concretos de su transformación hacia nuevos productos de interés, que incluyen aditivos para biocombustibles, productos de Química Fina como por ejemplo plaguicidas y aditivos de pinturas y en Química Farmacéutica. Finalmente, se discuten algunos aspectos que serán necesarios investigar para el desarrollo de productos a partir de residuos post-cosecha que podrían obtenerse del Cinturón Hortícola Platense.
Palabras clave
Ácido levulínico y derivados, Bioeconomía sustentable, Moléculas plataforma, Química Sostenible, Residuos hortícolas
Citas
- A.M. Escobar Caicedo “Materiales basados en heteropoliácidos tipo keggin y su aplicación en reacciones de esterificación para la valorización de derivados de biomasa” 2017, Tesis Doctoral. Facultad de Ciencias Exactas. Universidad Nacional de La Plata.
- R. Carson “Silent Spring” 1962, Ed. Harcourt H.M.
- P. Anastas, J.C. Warner, “Green Chemistry: Theory and practice” 1998, Ed. Oxford University Press.
- J.B. Manley, P.T. Anastas, B.W. Cue, “Frontiers in Green Chemistry: meeting the grand challenges for sustainability in R&D and manufacturing”, J. Clean. Prod., vol. 16(6), pp. 743-750, Apr. 2008. https://doi.org/10.1016/j.jclepro.2007.02.025
- C.O. Tuck, E. Perez, I.T. Horvath, R. Sheldon, M. Poliakoff, “Valorization of biomass: deriving more value from waste”. Science, vol. 337(6095), pp. 695-699, Aug. 2012. https://doi.org/10.1126/science.1218930
- J.H. Clark, “Green chemistry: today (and tomorrow)”. Green Chem. vol. 8(1), pp. 17-21, 2006, https://doi.org/10.1039/B516637N
- F.W. Lichtenthaler, S. Peters, “Carbohydrates as green raw materials for the chemical industry”. C. R. Chim. vol. 7(2), pp. 65-90, Feb. 2004. https://doi.org/10.1016/j.crci.2004.02.002
- M. FitzPatrick, P. Champagne, M.F. Cunningham, R.A. Whitney, “A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products”. Bioresour. Technol. vol. 101(23), pp. 8915-8922. Dec. 2010. https://doi.org/10.1016/j.biortech.2010.06.125
- P. Alvira, E. Tomás-Pejó, M. Ballesteros, M.J. Negro, “Bioresource technology pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review”. Bioresour. Technol. vol. 101(13), pp. 4851-4861. Jul. 2010. https://doi.org/10.1016/j.biortech.2009.11.093
- V. Menon, M. Rao, “Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept”. Progr. Energ. Combust. Sci. vol. 38(4), pp. 522-550. Aug. 2012. https://doi.org/10.1016/j.pecs.2012.02.002
- J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, “The catalytic valorization of ligning for the production of renewable chemicals”. Chem. Rev. vol. 110 (6), pp. 3552-3599. Mar. 2010. https://doi.org/10.1021/cr900354u
- S.J. Oh, J. Park, J.G. Na, Y.K. Oh, Y.K. Chang, “Production of 5-hydroxymethylfurfural from agarose by using a solid acid catalyst in dimethyl sulfoxide”. RSC Adv. Vol. 59, pp. 47983-47989. My 2015. https://doi.org/10.1039/C5RA02911B
- K.J. Zeitsch, “The chemistry and technology of furfural and its many by-products”. 2010. Ed. Elsevier.
- W. Hao, W. Li, X. Tang, X. Zeng, Y. Sun, S. Liu, L. Lin, “Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethyl furfural to the building block 2,5-bishydroxymethyl furan”. Green Chem. vol. 18(4), pp. 1080-1088. 2016. https://doi.org/10.1039/C5GC01221J
- J. Rodríguez-Aguilera, A. Brown-Gómez, A. Alvarez-Delgado, G. Michelena, “Producción de ácido levulínico: una revisión bibliográfica”. ICIDCA sobre los derivados de la caña de azúcar, vol. 52(2), pp. 36-46. May-Aug. 2018. E-ISSN:2410-8529
- T. Werpy, G. Petersen, “Top value added chemicals from biomass Volume I-Results of screening for potential candidates from sugars and synthesis gas”, 2004, U.S. Department of Energy. https://doi.org/10.2172/15008859
- J.J. Bozell, G.R. Petersen, “Technology development for the production of biobased products from biorefinery carbohydrates - the US Department of Energy’s “Top 10” revisited”. Green Chem. vol. 12(4), pp. 539-554. May 2010. https://doi.org/10.1039/B922014C
- G. Morales, “Aprovechamiento de biomasa lignocelulósica: proceso BIOFINE. Energía y Sostenibilidad” 2013. Recuperado el 20 de mayo de 2024 de http://www.madrimasd.org
- “Levulinic acid market analysis and segment forecasts to 2020”. Grand View Research. 2015 http://grandvewresearch.com
- M. Conrad, “XLI. Ueber acetsuccinsäureester und dessen derivate”. Justus Liebigs Ann. Chem. vol. 188, pp. 217-226. May. 1877. https://doi.org/10.1002/jlac.18771880111
- A.F. v. Grote, E. Kehrer, B. Tollens, “Untersuchungen über die lävulinsäure oder β- acetopropionsäure. I. Ueber darstellung und eigenschaften der lävulinsäure”. Justus Liebigs Ann. Chem. vol. 206, pp. 207-225. 1881. https://doi.org/10.1002/jlac.18812060111
- P.P.T. Sah, S.-Y. Ma, “Levulinic acid and its esters”. J. Am. Chem. Soc. vol. 52(12), pp. 4880−4883. Dec. 1930. https://doi.org/10.1021/ja01375a033
- H.A. Schuette, M.A. Cowley, “Levulinic acid. II. The vapor pressures of its alkyl esters (C1--C6)”. J. Am. Chem. Soc. vol. 53(9), pp. 3485-3489. Sep. 1931. https://doi.org/10.1021/ja01360a039
- S.W. Fitzpatrick, “The biofine technology: A “bio-refinery” concept based on thermochemical conversion of cellulosic biomass”. Feedstocks for the Future. Chapter 20, pp. 271-287. Jan. 2006. https://doi.org/10.1021/bk-2006-0921.ch020
- K.C. Maheria, J. Kozinski, A. Dalai, “Esterification of levulinic acid to n-butyl levulinate over various acidic zeolites”. Catal. Lett. vol. 143, pp. 1220-1225. Oct. 2013. https://doi.org/10.1007/s10562-013-1041-3
- S. Dharne, V.V. Bokade, “Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay”. J. Nat. Gas Chem. vol. 20(1), pp. 18-24. Jan. 2011. https://doi.org/10.1016/S1003-9953(10)60147-8
- K.Y. Nandiwale, P.S. Niphadkar, S.S. Deshpande, V.V. Bokade, “Esterification of renewable levulinic acid to ethyl levulinate biodiesel catalyzed by highly active and reusable desilicated H-ZSM-5”. J. Chem. Technol. Biotechnol. vol. 89(10), pp. 1507-1515. Sep. 2014. https://doi.org/10.1002/jctb.4228
- G. Pasquale, P. Vázquez, G. Romanelli, G. Baronetti, “Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells-Dawson heteropolyacid as catalyst”. Catal. Commun. vol. 18, pp. 115-120. Feb. 2012. https://doi.org/10.1016/j.catcom.2011.12.004
- W. Ciptonugroho, M.G. Al-Shaal, J.B. Mensah, R. Palkovits, “One pot synthesis of WOx / mesoporous-ZrO2 catalysts for the production of levulinic-acid esters”. J. Catal. vol. 340, pp. 17-29. Aug. 2016. https://doi.org/10.1016/j.jcat.2016.05.001
- L.E. Manzer, “Biomass derivatives: A sustainable source of chemicals”. Feedstocks for the Future. Chapter 4. pp. 40-51. Jan. 2006. https://doi.org/10.1021/bk-2006-0921.ch004
- P.J. Fagan, L.E. Manzer, “Preparation of levulinic acid esters and formic acid esters from biomass and olefins”. 2006. US patent 7153996 B2.
- Z. Zhang, K. Dong, Z. Zhao, “Efficient conversion of furfuryl alcohol into alkyl levulinates catalyzed by an organic-inorganic hybrid solid acid catalyst”. ChemSusChem vol. 4(1), pp. 112-118. Jan. 2011. https://doi.org/10.1002/cssc.201000231
- J.P. Lange, W.D. van de Graaf, R.J. “Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts”. ChemSusChem vol. 2(5), pp. 437-441. May 2009. https://doi.org/10.1002/cssc.200800216
- P. Demma Carà, R. Ciriminna, N.R., Shiju, G. Rothenberg, M. Pagliaro, “Enhanced heterogeneous catalytic conversion of furfuryl alcohol into butyl levulinate”. ChemSusChem vol. 7(3), pp. 835-840. Feb. 2014. https://doi.org/10.1002/cssc.201301027
- R. Reynoso, G.A. Pasquale, D.M. Ruiz, L.A. Páez, J.J. Martínez, G.P. Romanelli, “Sulfonated-cellulose as catalysts for the efficient conversion of levulinic acid into ethyl levulinate”. Ciencia en Desarrollo, vol. 15(1), 16871. Apr. 2024. https://doi.org/10.19053/01217488.v15.n1.2024.16871
- L. Peng, L. Lin, J. Zhang, J. Shi, S. Liu, “Solid acid catalyzed glucose conversion to ethyl levulinate”. Appl. Catal. A: Gen. vol. 397(1-2), pp. 259-265. Apr. 2011. https://doi.org/10.1016/j.apcata.2011.03.008
- S. Saravanamurugan, O.N. Van Buu, A. Riisager, “Conversion of mono- and disaccharides to ethyl levulinate and ethyl pyranoside with sulfonic acid- functionalized Ionic liquids”. ChemSusChem vol. 4(6), pp. 723-726. May 2011. https://doi.org/10.1002/cssc.201100137
- K. Tominaga, “Preparation of levulinates from carbohydrates and alcohols with non volatile catalysts.” 2016. Patent JP2006206579.
- X. Hu, C. Lievens, A. Larcher, C.-Z. Li, “Reaction pathways of glucose during esterification: Effects of reaction parameters on the formation of humin type polymers”. Bioresour. Technol. vol. 102(21), pp. 10104-10113. Nov. 2011. https://doi.org/10.1016/j.biortech.2011.08.040
- D.J. Hayes, S. Fitzpatrick, M.H.B. Hayes, J.R.H. Ross, “The Biofine process–production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks”. Biorefineries-Industrial Processes and Products. Chpter 7, pp. 139-164. Wiley. Dec. 2005. https://doi.org/10.1002/9783527619849.ch7
- D.J. Hayes, “An examination of biorefining processes, catalysts and challenges”. Catal. Today vol. 145(1-2), pp. 138-151. Jul 2009. https://doi.org/10.1016/j.cattod.2008.04.017
- FAO, 2002. Specifications for Flavourings. Recuperado el 20 de mayo de 2024 de http://www.fao.org
- W.E. Erner, “Synthetic liquid fuel and fuel mixtures for oil-burning devices”. 1982. US patent 4364743A.
- C. Cerruti, G. Pasquale, D. Ruiz, G. Sathicq, M. Pérez, G. Romanelli, G. Blustein, “Estudio comparativo de tres métodos de obtención de ésteres del ácido levulínico para su aplicación en pinturas antiincrustantes”. Investigación Joven, vol. 10(1), pp. 23-24. Jun. 2023. https://revistas.unlp.edu.ar/InvJov/article/view/15181
- S.H. Qi, S. Zhang, L.H. Yang, P.Y. Qian, “Antifouling and antibacterial compounds from the gorgonians Subergorgia suberosa and Scripearia gracillis”. Nat. Prod. Res. vol. 22(2), pp. 154-166. 2008. https://doi.org/10.1080/14786410701642441
- A.S. Adeleye, E.A. Oranu, M. Tao, A.A. Keller, “Release and detection of nanosized copper from a commercial antifouling paint”. Water Res. vol. 102, pp. 374-382. Oct. 2016. https://doi.org/10.1016/j.watres.2016.06.056
- J.L. Molnar, R.L. Gamboa, C. Revenga, M.D. Spalding, “Assessing the global threat of invasive species to marine biodiversity”. Front. Ecol. Environ. vol. 6(9), pp. 485-492. Nov. 2008. https://doi.org/10.1890/070064
- “Convención Internacional sobre el Control de Sistemas Antifouling Nocivos en los Buques”, AFS Convention, 2001 Recuperado el 10 de julio de 2024 de http://www.official-documents.gov.uk/
- A. Escobar, M. Pérez, A. Sathicq, M. García, A. Paola, G. Romanelli, G. Blustein, “Alkyl 2-furoates obtained by green chemistry procedures as suitable new antifoulants for marine protective coatings”. J. Coat. Technol. Res. vol. 16, pp. 159-166. 2019. https://doi.org/10.1007/s11998-018-0110-3
- A.M. Escobar Caicedo, G. Romanelli, G. Blustein, “Elaboración de pinturas antifouling empleando aditivos bioactivos a base de furoatos de alquilo obtenidos a partir de derivados de la biomasa mediante síntesis eco-eficiente. Investigación Joven vol. 6, pp. 60. 2019.
- G. Romanelli, D.M. Ruiz, G. Pasquale, “Química de la biomasa y los biocombustibles”. 2016, Ed. Edulp.
- C. Chang, G. Xu, X. Jiang, “Production of ethyl levulinate by direct conversion of wheat straw in ethanol media”. Bioresour. Technol. vol. 121, pp. 93-99. Oct. 2012. https://doi.org/10.1016/j.biortech.2012.06.105
- X. Li, R. Xu, Q. Liu, M. Liang, J. Yang, S. Lu, G. Li, L. Lu, S. Chuanling, “Valorization of corn stover into furfural and levulinic acid over SAPO-18 zeolites: Effect of Brønsted to Lewis acid sites ratios”. Ind. Crops Prod. vol. 141, pp. 111759. Dec. 2019. https://doi.org/10.1016/j.indcrop.2019.111759
- C. Hak, P. Panchai, T. Nutongkaew, N. Grisdanurak, S. Tulaphol, “One-pot levulinic acid production from rice straw by acid hydrolysis in deep eutectic solvent”. Chem. Eng. Commun. vol. 211, pp. 366-378. Mar. 2022. https://doi.org/10.1080/00986445.2022.2056454
- E.S. Lopes, K.M.C. Dominices, M.S. Lopes, L.P. Tovar, R.M. Filho, “A green chemical production: Obtaining levulinic acid from pretreated sugarcane bagasse”. Chem. Eng. Trans. vol. 57, pp. 145-150. 2017. https://doi.org/10.3303/CET1757025
- K. Dussan, B. Girisuta, D. Haverty, J.J. Leahy, M.H.B. Hayes, M.H.B. “Kinetics of levulinic acid and furfural production from Miscanthus × giganteus”. Bioresour. Technol. vol. 149, pp. 216-224. Dec. 2013. https://doi.org/10.1016/j.biortech.2013.09.006
- M. Puccini, D. Licursi, E. Stefanelli, S. Vitolo, A.M. Raspolli Galletti, H.J. Heeres, “Levulinic acid from orange peel waste by hydrothermal carbonization (HTC)”. Chem. Eng. Trans. vol 50, pp. 145-150. 2016. http://dx.doi.org/10.3303/CET1650038
- T. Ao, Y. Luo, Y. Chen, Q. Cao, X. Liu, D. Li, “Towards zero waste: A valorization route of washing separation and liquid hot water consecutive pretreatment to achieve solid vinasse based biorefinery”. J. Clean. Prod. vol. 248, pp. 119253. Mar. 2020. https://doi.org/10.1016/j.jclepro.2019.119253
- K. Lappalainen, Y. Dong, “Simultaneous production of furfural and levulinic acid from pine sawdust via acid-catalysed mechanical depolymerization and microwave irradiation”. Biomass Bioenergy vol. 123, pp. 159-165. Apr. 2019. https://doi.org/10.1016/j.biombioe.2019.02.017
- S. Dutta, Q. Zhang, Y. Cao, C. Wu, K. Moustakas, S. Zhang, K.-H. Wong, D.C.W. Tsang, “Catalytic valorisation of various paper wastes into levulinic acid, hydroxymethylfurfural, and furfural: Influence of feedstock properties and ferric chloride”. Bioresour. Technol. vol. 357, pp. 127376. Aug. 2022. https://doi.org/10.1016/j.biortech.2022.127376
- B.K. Ozsel, “Valorization of textile waste hydrolysate for hydrogen gas and levulinic acid production”. Int. J. Hydrogen Energy vol. 46(7), pp. 4992-4997. Jan. 2021. https://doi.org/10.1016/j.ijhydene.2020.11.080
- N. Varriano, S. Laguto, P. Giovannone, N. Andriollo, T. Martínez Perea, “Análisis de pérdidas y desperdicios de hortalizas en el Gran La Plata. Su potencial uso como materia prima en la producción de alimentos”. Ingenio Tecnológico, vol. 2. 2020. http://portal.amelica.org/ameli/journal/266/2661113011/
- D. Di Menno Di Bucchianico, Y. Wang, J.-C. Buvat, Y. Pan, V. Casson Moreno, S. Leveneur, “Production of levulinic acid and alkyl levulinates: A process insight”. Green Chem. vol. 24, pp. 614-646. 2022. https://doi.org/10.1039/D1GC02457D
- S. Tabasso, E. Montoneri, D. Carnaroglio, M. Caporaso, G. Cravotto, “Microwave-assisted flash conversion of non-edible polysaccharides and post-harvest tomato plant waste to levulinic acid”. Green Chem. vol. 16, pp. 73-76. 2014. https://doi.org/10.1039/C3GC41103F
- M. Salgado-Ramos, S. Tabasso, E. Calcio Gaudino, F.J. Barba, G. Cravotto, “Conversion of artichoke leftovers to levulinic acid: A biorefinery approach”. J. Environ. Chem. Eng. vol. 11(6), pp. 111390. Dec. 2023. https://doi.org/10.1016/j.jece.2023.111390
- S. Maiti, G. Gallastegui, G. Suresh, V. Laxman Pachapur, S.K. Brar, Y. Le Bihan, P. Drogui, G. Buelna, M. Verma, R. Galvez-Cloutier, “Microwave-assisted one-pot conversion of agro-industrial wastes into levulinic acid: An alternate approach”. Bioresour. Technol. vol. 265, pp. 471-479. Oct. 2018. https://doi.org/10.1016/j.biortech.2018.06.012
- C. Carneiro Santana Junior, M.C. Diel Rambo, R.F. Teófilo, W.J. Cardoso, D. Assumpção Bertuol, M.K. Diel Rambo, “Production of levulinic acid from coconut residues (Cocos nucifera) using differents approaches”. Waste Biomass Valori. vol. 12, pp. 6875–6886. Jun. 2021. https://doi.org/10.1007/s12649-021-01484-0
- A.M. Raspolli Galletti, C. Antonetti, V. De Luise, D. Licursi, N. Nassi Di Nasso, “Levulinic acid production from waste biomass”. BioResources vol. 7(2), pp. 1824-1835. 2012.
- S.F. Bazoti, A.F. Camargo, C. Bonatto, S. Kubeneck, H. Treichel, D. de Oliveira, “Hydrothermal and microwave‐assisted synthesis of levulinic acid from watermelon residue”. Biofuels Bioprod. Biorefining, vol. 17(6), pp. 1724-1735. Sep. 2023. https://doi.org/10.1002/bbb.2542
- J.M. Tukacs, A.T. Holló, N. Rétfalvi, E. Cséfalvay, G. Dibó, D. Havasi, L.T. Mika, “Microwave-assisted valorization of biowastes to levulinic acid”. ChemistrySelect vol. 2(4), pp. 1375-1380. 2018. https://doi.org/10.1002/slct.201700037
- D. Licursi, C. Antonetti, S. Fulignati, A. Corsini, N. Boschi, A.M. Raspolli Galletti, “Smart valorization of waste biomass: Exhausted lemon peels, coffee silverskins and paper wastes for the production of levulinic acid”. Chem. Eng. Trans. Vol. 65, pp. 637-642. 2018. https://doi.org/10.3303/CET1865107
- R. Wang, X. Xie, Y. Liu, Z. Liu, G. Xie, N. Ji, L. Ma, M. Tang, “Facile and low-cost preparation of Nb/Al oxide catalyst with high performance for the conversion of kiwifruit waste residue to levulinic acid”. Catalysts vol. 5(4), pp. 1636-1648. Sep. 2015. https://doi.org/10.3390/catal5041636
- A. Kumar, D.Z. Shende, K.L. Wasewar, “Recovery of levulinic acid in its production using agriculture waste residue”. Proceedings of the International Conference on Advances in Chemical Engineering (AdChE) 2020, 3707323. Feb. 2020. http://dx.doi.org/10.2139/ssrn.3707323
- C. Antonetti, D. Licursi, S. Fulignati, G. Valentini, A.M. Raspolli Galletti, “New frontiers in the catalytic synthesis of levulinic acid: From sugars to raw and waste biomass as starting feedstock”. Catalysts vol. 6(12), pp. 196. Dec. 2016. https://doi.org/10.3390/catal6120196
- J. Yang, J. Park, J. Son, B. Kim, J.W. Lee, J.W. “Enhanced ethyl levulinate production from citrus peels through an in-situ hydrothermal reaction”. Bioresour. Technol. Rep. vol. 2, pp. 84-87. Jun. 2018. https://doi.org/10.1016/J.BITEB.2018.05.002
- C. Tao, L. Peng, J. Zhang, L. He, “Al-modified heteropolyacid facilitates alkyl levulinate production from cellulose and lignocellulosic biomass: Kinetics and mechanism studies”. Fuel Process. Technol. vol. 213, pp. 106709. Mar. 2021 https://doi.org/10.1016/j.fuproc.2020.106709
- M. Martínez Aguilar, X. Duret, T. Ghislain, D.P. Minh, A. Nzihou, J.-M. Lavoie, “A simple process for the production of fuel additives using residual lignocellulosic biomass”. Fuel vol. 264, pp. 116702. Mar. 2020. https://dx.doi.org/10.1016/j.fuel.2019.116702