Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Aprovechamiento De Biomasa Y Residuos Agrícolas En La Producción De Moléculas Plataforma: Ácido Levulínico Y Derivados

Resumen

En este artículo de revisión se describe la importancia de una molécula plataforma obtenida a partir de biomasa: el ácido levulínico. El mismo y sus derivados representan una fuente para la obtención de productos renovables que pueden ser sustitutos sostenibles de los ya conocidos y que se obtienen a partir de derivados del petróleo. Inicialmente, se describen algunos principios de la Química asociados a la sostenibilidad, posteriormente se analiza la forma de generar moléculas plataforma a partir de biomasa, particularmente se destaca el ácido levulínico el cual puede obtenerse por procesos térmico-hidrolíticos de biomasa vegetal y en particular de residuos agrícolas. Se describen además algunos ejemplos concretos de su transformación hacia nuevos productos de interés, que incluyen aditivos para biocombustibles, productos de Química Fina como por ejemplo plaguicidas y aditivos de pinturas y en Química Farmacéutica.  Finalmente, se discuten algunos aspectos que serán necesarios investigar para el desarrollo de productos a partir de residuos post-cosecha que podrían obtenerse del Cinturón Hortícola Platense.

Palabras clave

Ácido levulínico y derivados, Bioeconomía sustentable, Moléculas plataforma, Química Sostenible, Residuos hortícolas


Citas

  1. A.M. Escobar Caicedo “Materiales basados en heteropoliácidos tipo keggin y su aplicación en reacciones de esterificación para la valorización de derivados de biomasa” 2017, Tesis Doctoral. Facultad de Ciencias Exactas. Universidad Nacional de La Plata.
  2. R. Carson “Silent Spring” 1962, Ed. Harcourt H.M.
  3. P. Anastas, J.C. Warner, “Green Chemistry: Theory and practice” 1998, Ed. Oxford University Press.
  4. J.B. Manley, P.T. Anastas, B.W. Cue, “Frontiers in Green Chemistry: meeting the grand challenges for sustainability in R&D and manufacturing”, J. Clean. Prod., vol. 16(6), pp. 743-750, Apr. 2008. https://doi.org/10.1016/j.jclepro.2007.02.025
  5. C.O. Tuck, E. Perez, I.T. Horvath, R. Sheldon, M. Poliakoff, “Valorization of biomass: deriving more value from waste”. Science, vol. 337(6095), pp. 695-699, Aug. 2012. https://doi.org/10.1126/science.1218930
  6. J.H. Clark, “Green chemistry: today (and tomorrow)”. Green Chem. vol. 8(1), pp. 17-21, 2006, https://doi.org/10.1039/B516637N
  7. F.W. Lichtenthaler, S. Peters, “Carbohydrates as green raw materials for the chemical industry”. C. R. Chim. vol. 7(2), pp. 65-90, Feb. 2004. https://doi.org/10.1016/j.crci.2004.02.002
  8. M. FitzPatrick, P. Champagne, M.F. Cunningham, R.A. Whitney, “A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products”. Bioresour. Technol. vol. 101(23), pp. 8915-8922. Dec. 2010. https://doi.org/10.1016/j.biortech.2010.06.125
  9. P. Alvira, E. Tomás-Pejó, M. Ballesteros, M.J. Negro, “Bioresource technology pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review”. Bioresour. Technol. vol. 101(13), pp. 4851-4861. Jul. 2010. https://doi.org/10.1016/j.biortech.2009.11.093
  10. V. Menon, M. Rao, “Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept”. Progr. Energ. Combust. Sci. vol. 38(4), pp. 522-550. Aug. 2012. https://doi.org/10.1016/j.pecs.2012.02.002
  11. J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, “The catalytic valorization of ligning for the production of renewable chemicals”. Chem. Rev. vol. 110 (6), pp. 3552-3599. Mar. 2010. https://doi.org/10.1021/cr900354u
  12. S.J. Oh, J. Park, J.G. Na, Y.K. Oh, Y.K. Chang, “Production of 5-hydroxymethylfurfural from agarose by using a solid acid catalyst in dimethyl sulfoxide”. RSC Adv. Vol. 59, pp. 47983-47989. My 2015. https://doi.org/10.1039/C5RA02911B
  13. K.J. Zeitsch, “The chemistry and technology of furfural and its many by-products”. 2010. Ed. Elsevier.
  14. W. Hao, W. Li, X. Tang, X. Zeng, Y. Sun, S. Liu, L. Lin, “Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethyl furfural to the building block 2,5-bishydroxymethyl furan”. Green Chem. vol. 18(4), pp. 1080-1088. 2016. https://doi.org/10.1039/C5GC01221J
  15. J. Rodríguez-Aguilera, A. Brown-Gómez, A. Alvarez-Delgado, G. Michelena, “Producción de ácido levulínico: una revisión bibliográfica”. ICIDCA sobre los derivados de la caña de azúcar, vol. 52(2), pp. 36-46. May-Aug. 2018. E-ISSN:2410-8529
  16. T. Werpy, G. Petersen, “Top value added chemicals from biomass Volume I-Results of screening for potential candidates from sugars and synthesis gas”, 2004, U.S. Department of Energy. https://doi.org/10.2172/15008859
  17. J.J. Bozell, G.R. Petersen, “Technology development for the production of biobased products from biorefinery carbohydrates - the US Department of Energy’s “Top 10” revisited”. Green Chem. vol. 12(4), pp. 539-554. May 2010. https://doi.org/10.1039/B922014C
  18. G. Morales, “Aprovechamiento de biomasa lignocelulósica: proceso BIOFINE. Energía y Sostenibilidad” 2013. Recuperado el 20 de mayo de 2024 de http://www.madrimasd.org
  19. “Levulinic acid market analysis and segment forecasts to 2020”. Grand View Research. 2015 http://grandvewresearch.com
  20. M. Conrad, “XLI. Ueber acetsuccinsäureester und dessen derivate”. Justus Liebigs Ann. Chem. vol. 188, pp. 217-226. May. 1877. https://doi.org/10.1002/jlac.18771880111
  21. A.F. v. Grote, E. Kehrer, B. Tollens, “Untersuchungen über die lävulinsäure oder β- acetopropionsäure. I. Ueber darstellung und eigenschaften der lävulinsäure”. Justus Liebigs Ann. Chem. vol. 206, pp. 207-225. 1881. https://doi.org/10.1002/jlac.18812060111
  22. P.P.T. Sah, S.-Y. Ma, “Levulinic acid and its esters”. J. Am. Chem. Soc. vol. 52(12), pp. 4880−4883. Dec. 1930. https://doi.org/10.1021/ja01375a033
  23. H.A. Schuette, M.A. Cowley, “Levulinic acid. II. The vapor pressures of its alkyl esters (C1--C6)”. J. Am. Chem. Soc. vol. 53(9), pp. 3485-3489. Sep. 1931. https://doi.org/10.1021/ja01360a039
  24. S.W. Fitzpatrick, “The biofine technology: A “bio-refinery” concept based on thermochemical conversion of cellulosic biomass”. Feedstocks for the Future. Chapter 20, pp. 271-287. Jan. 2006. https://doi.org/10.1021/bk-2006-0921.ch020
  25. K.C. Maheria, J. Kozinski, A. Dalai, “Esterification of levulinic acid to n-butyl levulinate over various acidic zeolites”. Catal. Lett. vol. 143, pp. 1220-1225. Oct. 2013. https://doi.org/10.1007/s10562-013-1041-3
  26. S. Dharne, V.V. Bokade, “Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay”. J. Nat. Gas Chem. vol. 20(1), pp. 18-24. Jan. 2011. https://doi.org/10.1016/S1003-9953(10)60147-8
  27. K.Y. Nandiwale, P.S. Niphadkar, S.S. Deshpande, V.V. Bokade, “Esterification of renewable levulinic acid to ethyl levulinate biodiesel catalyzed by highly active and reusable desilicated H-ZSM-5”. J. Chem. Technol. Biotechnol. vol. 89(10), pp. 1507-1515. Sep. 2014. https://doi.org/10.1002/jctb.4228
  28. G. Pasquale, P. Vázquez, G. Romanelli, G. Baronetti, “Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells-Dawson heteropolyacid as catalyst”. Catal. Commun. vol. 18, pp. 115-120. Feb. 2012. https://doi.org/10.1016/j.catcom.2011.12.004
  29. W. Ciptonugroho, M.G. Al-Shaal, J.B. Mensah, R. Palkovits, “One pot synthesis of WOx / mesoporous-ZrO2 catalysts for the production of levulinic-acid esters”. J. Catal. vol. 340, pp. 17-29. Aug. 2016. https://doi.org/10.1016/j.jcat.2016.05.001
  30. L.E. Manzer, “Biomass derivatives: A sustainable source of chemicals”. Feedstocks for the Future. Chapter 4. pp. 40-51. Jan. 2006. https://doi.org/10.1021/bk-2006-0921.ch004
  31. P.J. Fagan, L.E. Manzer, “Preparation of levulinic acid esters and formic acid esters from biomass and olefins”. 2006. US patent 7153996 B2.
  32. Z. Zhang, K. Dong, Z. Zhao, “Efficient conversion of furfuryl alcohol into alkyl levulinates catalyzed by an organic-inorganic hybrid solid acid catalyst”. ChemSusChem vol. 4(1), pp. 112-118. Jan. 2011. https://doi.org/10.1002/cssc.201000231
  33. J.P. Lange, W.D. van de Graaf, R.J. “Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts”. ChemSusChem vol. 2(5), pp. 437-441. May 2009. https://doi.org/10.1002/cssc.200800216
  34. P. Demma Carà, R. Ciriminna, N.R., Shiju, G. Rothenberg, M. Pagliaro, “Enhanced heterogeneous catalytic conversion of furfuryl alcohol into butyl levulinate”. ChemSusChem vol. 7(3), pp. 835-840. Feb. 2014. https://doi.org/10.1002/cssc.201301027
  35. R. Reynoso, G.A. Pasquale, D.M. Ruiz, L.A. Páez, J.J. Martínez, G.P. Romanelli, “Sulfonated-cellulose as catalysts for the efficient conversion of levulinic acid into ethyl levulinate”. Ciencia en Desarrollo, vol. 15(1), 16871. Apr. 2024. https://doi.org/10.19053/01217488.v15.n1.2024.16871
  36. L. Peng, L. Lin, J. Zhang, J. Shi, S. Liu, “Solid acid catalyzed glucose conversion to ethyl levulinate”. Appl. Catal. A: Gen. vol. 397(1-2), pp. 259-265. Apr. 2011. https://doi.org/10.1016/j.apcata.2011.03.008
  37. S. Saravanamurugan, O.N. Van Buu, A. Riisager, “Conversion of mono- and disaccharides to ethyl levulinate and ethyl pyranoside with sulfonic acid- functionalized Ionic liquids”. ChemSusChem vol. 4(6), pp. 723-726. May 2011. https://doi.org/10.1002/cssc.201100137
  38. K. Tominaga, “Preparation of levulinates from carbohydrates and alcohols with non volatile catalysts.” 2016. Patent JP2006206579.
  39. X. Hu, C. Lievens, A. Larcher, C.-Z. Li, “Reaction pathways of glucose during esterification: Effects of reaction parameters on the formation of humin type polymers”. Bioresour. Technol. vol. 102(21), pp. 10104-10113. Nov. 2011. https://doi.org/10.1016/j.biortech.2011.08.040
  40. D.J. Hayes, S. Fitzpatrick, M.H.B. Hayes, J.R.H. Ross, “The Biofine process–production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks”. Biorefineries-Industrial Processes and Products. Chpter 7, pp. 139-164. Wiley. Dec. 2005. https://doi.org/10.1002/9783527619849.ch7
  41. D.J. Hayes, “An examination of biorefining processes, catalysts and challenges”. Catal. Today vol. 145(1-2), pp. 138-151. Jul 2009. https://doi.org/10.1016/j.cattod.2008.04.017
  42. FAO, 2002. Specifications for Flavourings. Recuperado el 20 de mayo de 2024 de http://www.fao.org
  43. W.E. Erner, “Synthetic liquid fuel and fuel mixtures for oil-burning devices”. 1982. US patent 4364743A.
  44. C. Cerruti, G. Pasquale, D. Ruiz, G. Sathicq, M. Pérez, G. Romanelli, G. Blustein, “Estudio comparativo de tres métodos de obtención de ésteres del ácido levulínico para su aplicación en pinturas antiincrustantes”. Investigación Joven, vol. 10(1), pp. 23-24. Jun. 2023. https://revistas.unlp.edu.ar/InvJov/article/view/15181
  45. S.H. Qi, S. Zhang, L.H. Yang, P.Y. Qian, “Antifouling and antibacterial compounds from the gorgonians Subergorgia suberosa and Scripearia gracillis”. Nat. Prod. Res. vol. 22(2), pp. 154-166. 2008. https://doi.org/10.1080/14786410701642441
  46. A.S. Adeleye, E.A. Oranu, M. Tao, A.A. Keller, “Release and detection of nanosized copper from a commercial antifouling paint”. Water Res. vol. 102, pp. 374-382. Oct. 2016. https://doi.org/10.1016/j.watres.2016.06.056
  47. J.L. Molnar, R.L. Gamboa, C. Revenga, M.D. Spalding, “Assessing the global threat of invasive species to marine biodiversity”. Front. Ecol. Environ. vol. 6(9), pp. 485-492. Nov. 2008. https://doi.org/10.1890/070064
  48. “Convención Internacional sobre el Control de Sistemas Antifouling Nocivos en los Buques”, AFS Convention, 2001 Recuperado el 10 de julio de 2024 de http://www.official-documents.gov.uk/
  49. A. Escobar, M. Pérez, A. Sathicq, M. García, A. Paola, G. Romanelli, G. Blustein, “Alkyl 2-furoates obtained by green chemistry procedures as suitable new antifoulants for marine protective coatings”. J. Coat. Technol. Res. vol. 16, pp. 159-166. 2019. https://doi.org/10.1007/s11998-018-0110-3
  50. A.M. Escobar Caicedo, G. Romanelli, G. Blustein, “Elaboración de pinturas antifouling empleando aditivos bioactivos a base de furoatos de alquilo obtenidos a partir de derivados de la biomasa mediante síntesis eco-eficiente. Investigación Joven vol. 6, pp. 60. 2019.
  51. G. Romanelli, D.M. Ruiz, G. Pasquale, “Química de la biomasa y los biocombustibles”. 2016, Ed. Edulp.
  52. C. Chang, G. Xu, X. Jiang, “Production of ethyl levulinate by direct conversion of wheat straw in ethanol media”. Bioresour. Technol. vol. 121, pp. 93-99. Oct. 2012. https://doi.org/10.1016/j.biortech.2012.06.105
  53. X. Li, R. Xu, Q. Liu, M. Liang, J. Yang, S. Lu, G. Li, L. Lu, S. Chuanling, “Valorization of corn stover into furfural and levulinic acid over SAPO-18 zeolites: Effect of Brønsted to Lewis acid sites ratios”. Ind. Crops Prod. vol. 141, pp. 111759. Dec. 2019. https://doi.org/10.1016/j.indcrop.2019.111759
  54. C. Hak, P. Panchai, T. Nutongkaew, N. Grisdanurak, S. Tulaphol, “One-pot levulinic acid production from rice straw by acid hydrolysis in deep eutectic solvent”. Chem. Eng. Commun. vol. 211, pp. 366-378. Mar. 2022. https://doi.org/10.1080/00986445.2022.2056454
  55. E.S. Lopes, K.M.C. Dominices, M.S. Lopes, L.P. Tovar, R.M. Filho, “A green chemical production: Obtaining levulinic acid from pretreated sugarcane bagasse”. Chem. Eng. Trans. vol. 57, pp. 145-150. 2017. https://doi.org/10.3303/CET1757025
  56. K. Dussan, B. Girisuta, D. Haverty, J.J. Leahy, M.H.B. Hayes, M.H.B. “Kinetics of levulinic acid and furfural production from Miscanthus × giganteus”. Bioresour. Technol. vol. 149, pp. 216-224. Dec. 2013. https://doi.org/10.1016/j.biortech.2013.09.006
  57. M. Puccini, D. Licursi, E. Stefanelli, S. Vitolo, A.M. Raspolli Galletti, H.J. Heeres, “Levulinic acid from orange peel waste by hydrothermal carbonization (HTC)”. Chem. Eng. Trans. vol 50, pp. 145-150. 2016. http://dx.doi.org/10.3303/CET1650038
  58. T. Ao, Y. Luo, Y. Chen, Q. Cao, X. Liu, D. Li, “Towards zero waste: A valorization route of washing separation and liquid hot water consecutive pretreatment to achieve solid vinasse based biorefinery”. J. Clean. Prod. vol. 248, pp. 119253. Mar. 2020. https://doi.org/10.1016/j.jclepro.2019.119253
  59. K. Lappalainen, Y. Dong, “Simultaneous production of furfural and levulinic acid from pine sawdust via acid-catalysed mechanical depolymerization and microwave irradiation”. Biomass Bioenergy vol. 123, pp. 159-165. Apr. 2019. https://doi.org/10.1016/j.biombioe.2019.02.017
  60. S. Dutta, Q. Zhang, Y. Cao, C. Wu, K. Moustakas, S. Zhang, K.-H. Wong, D.C.W. Tsang, “Catalytic valorisation of various paper wastes into levulinic acid, hydroxymethylfurfural, and furfural: Influence of feedstock properties and ferric chloride”. Bioresour. Technol. vol. 357, pp. 127376. Aug. 2022. https://doi.org/10.1016/j.biortech.2022.127376
  61. B.K. Ozsel, “Valorization of textile waste hydrolysate for hydrogen gas and levulinic acid production”. Int. J. Hydrogen Energy vol. 46(7), pp. 4992-4997. Jan. 2021. https://doi.org/10.1016/j.ijhydene.2020.11.080
  62. N. Varriano, S. Laguto, P. Giovannone, N. Andriollo, T. Martínez Perea, “Análisis de pérdidas y desperdicios de hortalizas en el Gran La Plata. Su potencial uso como materia prima en la producción de alimentos”. Ingenio Tecnológico, vol. 2. 2020. http://portal.amelica.org/ameli/journal/266/2661113011/
  63. D. Di Menno Di Bucchianico, Y. Wang, J.-C. Buvat, Y. Pan, V. Casson Moreno, S. Leveneur, “Production of levulinic acid and alkyl levulinates: A process insight”. Green Chem. vol. 24, pp. 614-646. 2022. https://doi.org/10.1039/D1GC02457D
  64. S. Tabasso, E. Montoneri, D. Carnaroglio, M. Caporaso, G. Cravotto, “Microwave-assisted flash conversion of non-edible polysaccharides and post-harvest tomato plant waste to levulinic acid”. Green Chem. vol. 16, pp. 73-76. 2014. https://doi.org/10.1039/C3GC41103F
  65. M. Salgado-Ramos, S. Tabasso, E. Calcio Gaudino, F.J. Barba, G. Cravotto, “Conversion of artichoke leftovers to levulinic acid: A biorefinery approach”. J. Environ. Chem. Eng. vol. 11(6), pp. 111390. Dec. 2023. https://doi.org/10.1016/j.jece.2023.111390
  66. S. Maiti, G. Gallastegui, G. Suresh, V. Laxman Pachapur, S.K. Brar, Y. Le Bihan, P. Drogui, G. Buelna, M. Verma, R. Galvez-Cloutier, “Microwave-assisted one-pot conversion of agro-industrial wastes into levulinic acid: An alternate approach”. Bioresour. Technol. vol. 265, pp. 471-479. Oct. 2018. https://doi.org/10.1016/j.biortech.2018.06.012
  67. C. Carneiro Santana Junior, M.C. Diel Rambo, R.F. Teófilo, W.J. Cardoso, D. Assumpção Bertuol, M.K. Diel Rambo, “Production of levulinic acid from coconut residues (Cocos nucifera) using differents approaches”. Waste Biomass Valori. vol. 12, pp. 6875–6886. Jun. 2021. https://doi.org/10.1007/s12649-021-01484-0
  68. A.M. Raspolli Galletti, C. Antonetti, V. De Luise, D. Licursi, N. Nassi Di Nasso, “Levulinic acid production from waste biomass”. BioResources vol. 7(2), pp. 1824-1835. 2012.
  69. S.F. Bazoti, A.F. Camargo, C. Bonatto, S. Kubeneck, H. Treichel, D. de Oliveira, “Hydrothermal and microwave‐assisted synthesis of levulinic acid from watermelon residue”. Biofuels Bioprod. Biorefining, vol. 17(6), pp. 1724-1735. Sep. 2023. https://doi.org/10.1002/bbb.2542
  70. J.M. Tukacs, A.T. Holló, N. Rétfalvi, E. Cséfalvay, G. Dibó, D. Havasi, L.T. Mika, “Microwave-assisted valorization of biowastes to levulinic acid”. ChemistrySelect vol. 2(4), pp. 1375-1380. 2018. https://doi.org/10.1002/slct.201700037
  71. D. Licursi, C. Antonetti, S. Fulignati, A. Corsini, N. Boschi, A.M. Raspolli Galletti, “Smart valorization of waste biomass: Exhausted lemon peels, coffee silverskins and paper wastes for the production of levulinic acid”. Chem. Eng. Trans. Vol. 65, pp. 637-642. 2018. https://doi.org/10.3303/CET1865107
  72. R. Wang, X. Xie, Y. Liu, Z. Liu, G. Xie, N. Ji, L. Ma, M. Tang, “Facile and low-cost preparation of Nb/Al oxide catalyst with high performance for the conversion of kiwifruit waste residue to levulinic acid”. Catalysts vol. 5(4), pp. 1636-1648. Sep. 2015. https://doi.org/10.3390/catal5041636
  73. A. Kumar, D.Z. Shende, K.L. Wasewar, “Recovery of levulinic acid in its production using agriculture waste residue”. Proceedings of the International Conference on Advances in Chemical Engineering (AdChE) 2020, 3707323. Feb. 2020. http://dx.doi.org/10.2139/ssrn.3707323
  74. C. Antonetti, D. Licursi, S. Fulignati, G. Valentini, A.M. Raspolli Galletti, “New frontiers in the catalytic synthesis of levulinic acid: From sugars to raw and waste biomass as starting feedstock”. Catalysts vol. 6(12), pp. 196. Dec. 2016. https://doi.org/10.3390/catal6120196
  75. J. Yang, J. Park, J. Son, B. Kim, J.W. Lee, J.W. “Enhanced ethyl levulinate production from citrus peels through an in-situ hydrothermal reaction”. Bioresour. Technol. Rep. vol. 2, pp. 84-87. Jun. 2018. https://doi.org/10.1016/J.BITEB.2018.05.002
  76. C. Tao, L. Peng, J. Zhang, L. He, “Al-modified heteropolyacid facilitates alkyl levulinate production from cellulose and lignocellulosic biomass: Kinetics and mechanism studies”. Fuel Process. Technol. vol. 213, pp. 106709. Mar. 2021 https://doi.org/10.1016/j.fuproc.2020.106709
  77. M. Martínez Aguilar, X. Duret, T. Ghislain, D.P. Minh, A. Nzihou, J.-M. Lavoie, “A simple process for the production of fuel additives using residual lignocellulosic biomass”. Fuel vol. 264, pp. 116702. Mar. 2020. https://dx.doi.org/10.1016/j.fuel.2019.116702

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 > >> 

También puede {advancedSearchLink} para este artículo.