Skip to main navigation menu Skip to main content Skip to site footer

Detailed description and comparative analysis of techniques for tracking the maximum power point of solar panels using OpenModelica

Abstract

This paper explains, implements, analyzes and compares the performance of the following techniques for Maximum Point Power Tracking (MPPT) of a solar panel: 1) Perturbation and Observation (P&O), 2) constant voltage, 3) simple scaling, and 4) incremental conductance. The detailed description of each technique is presented as the first contribution of the paper, so that engineering students and engineers can more easily understand them and see their advantages and disadvantages. The techniques were implemented in OpenModelica, where a commercial solar panel controlled by a Boost converter is simulated.

OpenModelica has two MPPT blocks based on the classical P&O algorithm, therefore, blocks with the algorithms of the other techniques were created as the second contribution of the article. Simulation results show that the constant voltage technique has the worst performance, it is slow, and its efficiency drops considerably with temperature changes, so its use is not recommended; while the incremental conductance technique presents the best performance with irradiance and temperature changes.

PDF (Español)

References

  1. D. S. Abdelminaam, M. Said and E. H. Houssein, “Turbulent Flow of Water-Based Optimization Using New Objec-
  2. tive Function for Parameter Extraction of Six Photovoltaic Models”, in IEEE Access, vol. 9, pp. 35382-35398, 2021,
  3. doi: 10.1109/ACCESS.2021.3061529.
  4. M. U. Jan, A. Xin, M. A. Abdelbaky, H. U. Rehman and S. Iqbal, “Adaptive and Fuzzy PI Controllers Design for
  5. Frequency Regulation of Isolated Microgrid Integrated With Electric Vehicles”, in IEEE Access, vol. 8, pp. 87621-
  6. , 2020, doi: 10.1109/ACCESS.2020.2993178.
  7. P. Benalcázar, J. Lara and M. Samper, “Distributed Photovoltaic Generation in Ecuador: Economic Analysis and
  8. Incentives Mechanisms”, in IEEE Latin America Transactions, vol. 18, no. 03, pp. 564-572, March 2020, doi:
  9. 1109/TLA.2020.9082728.
  10. REN21 RENEWABLES., RENEWABLES 2021 GLOBAL STATUS REPORT. https://www.ren21.net/gsr-2021
  11. (2021).
  12. J. Ma, K. L. Man, T. O. Ting, N. Zhang, S. -U. Guan and P. W. H. Wong, “DEM: Direct Estimation Method
  13. for Photovoltaic Maximum Power Point Tracking”, Procedia Computer Science, vol. 17, pp. 537-544, 2013, doi:
  14. 1016/j.procs.2013.05.069.
  15. H. A. Sher, A. F. Murtaza, A. Noman, K. E. Addoweesh, K. Al-Haddad and M. Chiaberge, “A New Sensorless Hybrid MPPT Algorithm Based on Fractional Short-Circuit Current Measurement and P&O MPPT”, in IEEE Transac-
  16. tions on Sustainable Energy, vol. 6, no. 4, pp. 1426-1434, Oct. 2015, doi: 10.1109/TSTE.2015.2438781.
  17. B. C. Babu and S. Gurjar, “A Novel Simplified Two-Diode Model of Photovoltaic (PV) Module”, in IEEE Journal of
  18. Photovoltaics, vol. 4, no. 4, pp. 1156-1161, July 2014, doi: 10.1109/JPHOTOV.2014.2316371.
  19. M. A. G. de Brito, L. Galotto, L. P. Sampaio, G. d. A. e Melo and C. A. Canesin, “Evaluation of the Main MPPT Techniques for Photovoltaic Applications”, in IEEE Transactions on Industrial Electronics, vol. 60, no. 3, pp. 1156-
  20. , March 2013, doi: 10.1109/TIE.2012.2198036.
  21. M. Hlaili and H. Mechergui, “Comparison of Different MPPT Algorithms with a Proposed One Using a Power
  22. Estimator for Grid Connected PV Systems”, International Journal of Photoenergy, vol. 2016, pp. 1-10, 2016, doi:
  23. 1155/2016/1728398.
  24. S. Pant and R. P. Saini, “Comparative Study of MPPT Techniques for Solar Photovoltaic System”, 2019 Interna-
  25. tional Conference on Electrical, Electronics and Computer Engineering (UPCON), Aligarh, India, 2019, pp. 1-6,
  26. doi: 10.1109/UPCON47278.2019.8980004.
  27. L. Atik, P. Petit, J. P. Sawicki, Z. T. Ternifi, G. Bachir, M.Aillerie, “Comparison of four MPPT techniques for PV
  28. systems”, AIP Conference Proceedings, vol. 1758, no. 1,July 2016, doi: 10.1063/1.4959443.
  29. Z. M. S. Elbarbary and M. A. Alranini, “Review of maximum power point tracking algorithms of PV system”,
  30. Frontiers in Engineering and Built Environment, vol. 1,no. 1, pp. 68-80, 2021, doi: 10.1108/FEBE-03-2021-0019.
  31. J. López Seguel, S. I. Seleme Jr y L. M. F. Moráis, “Comparison of the performance of MPPT methods applied in
  32. converters Buck and Buck-Boost for autonomous photovoltaic systems”, Ingeniare. Revista chilena de ingeniería,
  33. vol. 29, no. 2, pp. 229-244, June 2021 doi: 10.4067/s071833052021000200229.
  34. N. Muñoz-Galeano, J. B. Cano-Quintero y J. M. López-Lezama, “Enseñando el Funcionamiento de los Inversores Puente H: Análisis del Intercambio de Potencia entre Bobinas y Condensadores”, Formación universitaria,
  35. vol. 9, no. 1, pp. 117-124, 2016, doi: 10.4067/s071850062016000100013.
  36. N. Muñoz-Galeano, J. M. López-Lezama y F. Villada-Duque, “Deducción de los Estados de Conmutación para
  37. los Inversores Multinivel VSC-MMC. Descripción Orientada a la Enseñanza en Ingeniería”, Formación universitaria, vol. 11, no. 1, pp. 115-126, 2018, doi: 10.4067/s071850062018000100115.
  38. OpenModelica, https://build.openmodelica.org/Documentation/PVSystems.Control.MPPTController.html (2021).
  39. Y. A. Gutiérrez, J. R. Saldarriaga, N. Muñoz y J. M. López, “YesikaGV/Tecnicas_MPPT”, GitHub,
  40. https://github.com/YesikaGV/Tecnicas_MPPT (2022).
  41. S. Murdoch and S. Reynoso, “Design and Implementation of a MPPT circuit for a Solar UAV”, in IEEE Latin Ame-
  42. rica Transactions, vol. 11, no. 1, pp. 108-111, Feb. 2013, doi: 10.1109/TLA.2013.6502787.
  43. Y. -C. Hsieh, L. -R. Yu, T. -C. Chang, W. -C. Liu, T.-H. Wu and C. -S. Moo, “Parameter Identification of One-Diode Dynamic Equivalent Circuit Model for Photovoltaic Panel”, in IEEE Journal of Photovoltaics, vol.10, no. 1, pp. 219-225, Jan. 2020, doi: 10.1109/JPHOTOV.2019.2951920.
  44. Y. A. Muñoz Maldonado, W. A. Cáceres Carvajal y A.D. Duarte Moreno, “Evaluación de alternativas para el
  45. dimensionamiento y mantenimiento de la instalación fotovoltaica en Cens”, Repositorio UNAB, 2021.
  46. A. T. Elsayed, T. A. Youssef, A. Mohamed and O. A. Mohammed “Design, Control and Management of P-V
  47. System for Residential Applications with Weak Grid Connection”, Eleventh LACCEI Latin American and Carib-
  48. bean Conference for Engineering and Technology, 2013.
  49. Y. Hishikawa, T. Takenouchi, M. Higa, K. Yamagoe, H. Ohshima and M. Yoshita, “Translation of Solar Cell Performance for Irradiance and Temperature From a Single I-V Curve Without Advance Information of Translation
  50. Parameters”, in IEEE Journal of Photovoltaics, vol. 9, no. 5, pp. 1195-1201, Sept. 2019, doi: 10.1109/JPHOTOV.2019.2924388.
  51. Y. A. Gutiérrez, J. R. Ortiz-Castrillón, N. Muñoz-Galeano, J. B. Cano-Quintero y J. M. López-Lezama,
  52. “Fast and Slow Dynamics in DC/DC Converters with MPPT for Applications in Photovoltaic Systems”, In-
  53. ternational Journal of Engineering Research and Technology, vol. 13, no. 11, p. 3255, Nov. 2020, doi:
  54. 37624/IJERT/13.11.2020.3255-3261.
  55. M. A. Elgendy, B. Zahawi and D. J. Atkinson, “Assessment of Perturb and Observe MPPT Algorithm Implementation Techniques for PV Pumping Applications”, in IEEE Transactions on Sustainable Energy, vol. 3, no. 1,
  56. pp. 21-33, Jan. 2012, doi: 10.1109/TSTE.2011.2168245.
  57. M. Killi and S. Samanta, “Modified Perturb and Observe MPPT Algorithm for Drift Avoidance in Photovol-
  58. taic Systems”, in IEEE Transactions on Industrial Electronics, vol. 62, no. 9, pp. 5549-5559, Sept. 2015, doi:
  59. 1109/TIE.2015.2407854.
  60. S. K. Kollimalla and M. K. Mishra, “Variable Perturbation Size Adaptive P&O MPPT Algorithm for Sudden
  61. Changes in Irradiance”, in IEEE Transactions on Sustainable Energy, vol. 5, no. 3, pp. 718-728, July 2014, doi:
  62. 1109/TSTE.2014.2300162.
  63. R. B. Bollipo, S. Mikkili and P. K. Bonthagorla, “Hybrid, optimal, intelligent and classical PV MPPT techniques: A
  64. review”, in CSEE Journal of Power and Energy Systems, vol. 7, no. 1, pp. 9-33, Jan. 2021, doi: 10.17775/CSEEJ-
  65. PES.2019.02720.
  66. A. Ali et al., “Investigation of MPPT Techniques Under Uniform and Non-Uniform Solar Irradiation Condition-
  67. A Retrospection”, in IEEE Access, vol. 8, pp. 127368-127392, 2020, doi: 10.1109/ACCESS.2020.3007710.
  68. C. Y. Tan, N. A. Rahim and J. Selvaraj, “Improvement of hill climbing method by introducing simple irradiance
  69. detection method”, 3rd IET International Conference on Clean Energy and Technology (CEAT) 2014, Kuching,
  70. , pp. 1-5, doi: 10.1049/cp.2014.1493.
  71. R. Rawat y S. S. Chandel, “Hill Climbing Techniques for tracking Maximum Power point in Solar Photovoltaic
  72. Systems-A Review”, Special Issue of International Journal of Sustainable Development and Green Economics
  73. (IJSDGE), 2013.
  74. S. B. Kjaer, “Evaluation of the “Hill Climbing”and the “Incremental Conductance”Maximum Power Point Trackers for Photovoltaic Power Systems”, in IEEE Transactions on Energy Conversion, vol. 27, no. 4, pp. 922-929, Dec. 2012, doi: 10.1109/TEC.2012.2218816.
  75. T. M. Chung, H. Daniyal, M. H. Sulaiman and M. S. Bakar, “Comparative study of P&O and modified incremen-
  76. tal conductance algorithm in solar maximum power point-tracking”, 4th IET Clean Energy and Technology Conference (CEAT 2016), Kuala Lumpur, Malaysia, 2016, pp. 1-6, doi: 10.1049/cp.2016.1300
  77. K. S. Tey and S. Mekhilef, Modified incremental conductance MPPT algorithm to mitigate inaccurate responses
  78. under fast-changing solar irradiation level, Solar Energy, vol. 101, pp. 333-342, March 2014, doi: 10.1016/j.solener.2014.01.003.
  79. N. Kumar, I. Hussain, B. Singh and B. K. Panigrahi, Self-Adaptive Incremental Conductance Algorithm for Swift and Ripple-Free Maximum Power Harvesting From PV Array, in IEEE Transactions on Industrial Informatics, vol. 14, no. 5, pp. 2031-2041, May 2018, doi: 10.1109/TII.2017.2765083.
  80. B. Ankaiah and J. Nageswararao, MPPT Algorithm for Solar Photovotaic Cell by Incremental Conductance Method, International Journal of Innovations in Engineering and Technology, vol. 2, no. 1, 2013.
  81. M. A. Elgendy, B. Zahawi and D. J. Atkinson, Assessment of the Incremental Conductance Maximum Power Point Tracking Algorithm, in IEEE Transactions on Sustainable Energy, vol. 4, no. 1, pp. 108-117,
  82. Jan. 2013, doi: 10.1109/TSTE.2012.2202698.

Downloads

Download data is not yet available.