Skip to main navigation menu Skip to main content Skip to site footer

Effect of interlaminar cation type on the pillaring capacity of the synthetic mica Na-2-Mica and the in – situ formation to MnS Nanoclusters

Abstract

In this work the Na-2-mica was synthesized by the sol-gel method and the effect of the cation exchange with lithium and hexadecylammonium, prior to the pillaring process with the Al Keggin’s polycation, was studied. The study was done by varying the density of pillars (10, 20 and 30 meq.Al3+ per gram of mica). The cation exchange with hexadecylammonium cations ensured the expansion of the interlayer; however, the study revealed that after the heat treatment in the pillaring process, the interlayer is not kept expanded, due to the high layer charge and the strongly acidic sites of mica. Most materials obtained formed particles of alumina (Al2O3) in the interlayer spacing, where the aluminum content and % CC increased as higher pillar density is provided. In addition, the formation of MnS nanoclusters in the pillared Al-2-mica was studied and the results indicated a limited growth of the nanoclusters respect to the Al content, due to amount interlayer alumina phase prevented proper diffusion of H2S(g) so they were deposited on the surface of the solid. All materials were mainly characterized by XRD, elemental analysis, analysis of the cation exchange capacity CEC and percentage of compensated charge -% CC.

Keywords

Keggin, pillared mica, Na-2-mica, MnS nanoclusters.

PDF (Español)

Author Biography

Lisette Ruiz Bravo

Química, Universidad de Nariño

Estudiante de Maestría, Universidad Pedagógica y Tecnológica de Colombia

Luis Alejandro Galeano

Profesor Departamento de Química, Universidad de Nariño

Mery Carolina Pazos Zarama

Profesora Escuela de Química, Universidad Pedagógica y Tecnológica de Colombia


References

  • ALBA, M., CASTRO, M., NARANJO, M., PAVON, E., (2006). Hydrothermal reactivity of Na-n-micas (n=2, 3, 4). Chemistry of Materials,18(1), 2867-2872. DOI: https://doi.org/10.1021/cm0514802
  • CARRADO, K., DECARREAU, A., PETIT, S., BERGAYA, F., LAGALY, G., (2006). Synthetic clay minerals and purification of natural clays. En Developments in Clay Science. Handbook of Clay Science DOI: https://doi.org/10.1016/S1572-4352(05)01004-4
  • KOMARNENI, S., RAVELLA, R., PARK, M., (2005). Swelling mica-type clays: synthesis by NaCl melt method, NMR characterization and cation exchange selectivity. Journal of Materials Chemistry, 15(1), 4241–4245. DOI: https://doi.org/10.1039/b509682k
  • PAULUS, W., KOMARNENI, S., ROY R., (1992). Bulk synthesis and selective exchange of strontium ions in Na4Mg6Al4Si4O20F4 -mica. Nature, 357(1), 571–573. DOI: https://doi.org/10.1038/357571a0
  • YAMAGUCHI, T., KITAJIMA, K., SAKAI, E., DAIMON, M., (2003). Properties of ZrO2-Pillared Fluorine Micas Synthesized Using Poly (vinil alcohol) as a Template Agent. Journal of the Ceramic Society of Japan, 111(1), 567-571. DOI: https://doi.org/10.2109/jcersj.111.567
  • SHIMIZU, K., NAKAMURO, Y., YAMANAKA, R., HATAMACHI, T., KODAMA, T., (2006). Pillaring of high charge density synthetic micas (Na-4-mica and Na-3-mica) by intercalation of oxides nanoparticles. Microporus and Mesoporus Materials, 95(1), 135–140. DOI: https://doi.org/10.1016/j.micromeso.2006.05.015
  • PRAUS, P., MATYS, J., KOZÁK, O., (2012). Critical evaluation of montmorillonite catalytic activity by means of photodecomposition of phenol. Journal of the Brazilian Chemical Society, 23(1), 1900–1906.
  • SHIBATA J, SHIMIZU K, TAKADA Y, SHICHI A, YOSHIDA H, SATOKAWA S., (2004). Structure of active Ag clusters in Ag zeolites for SCR of NO by propane in the presence of hydrogen. Journal of Catalysis, 227(2), 367–74. DOI: https://doi.org/10.1016/j.jcat.2004.08.007
  • NOVAK, T., (2008). Manganese-modified porous silicates. National institute of chemistry. 19(1), 1000.
  • HOUSECROFF C., SHARPE A., (2006). Química Inorgánica, 1(1). Pearson Prentice Hall.
  • RUIZ. L.,(2015). Estudio del Crecimiento in – situ de nanoclusters de Mn intercalados en una mica sintética de alta carga (Na-2-mica). En Trabajo de Grado. Universidad de Nariño.
  • GALEANO, L., (2011). Peroxidación catalítica de contaminantes orgánicos en medio acuoso utilizando una bentonita modificada con Al y Fe, Cu o Mn. En Tesis de Doctorado en Ciencias Químicas, Universidad de Salamanca.
  • PAVÓN, E., CASTRO, M., NARANJO, M., ORTA, M., PAZOS, C., ALBA, M., (2013). Hydration properties of synthetic high-charge micas saturated with different cations: An experimental approach. American Mineralogist, 98(1), 394–400. DOI: https://doi.org/10.2138/am.2013.4217
  • ALBA, M., CASTRO, M., ORTA, M., PAVÓN, E., PAZOS, C., VALENCIA J., (2011). Formation of Organo- HighlyCharged Mica. Langmuir, 27(1), 9711-9718. DOI: https://doi.org/10.1021/la200942u
  • IACOMI, F., VASILESCU, M., SIMON, S., (2006). Studies of MnS cluster formation in laumontite zeolite. Surface Science, 600(1), 4323–4327. DOI: https://doi.org/10.1016/j.susc.2006.02.075
  • Ingeominas (1999). Manual de Métodos Analíticos: Subdirección de ensayos y servicios tecnológicos, laboratorio de Geoquímica. Bogotá, (1999).
  • GÓMEZ, S.P., (2007). Estudio de la influencia de la carga interlaminar de esmectitas, sobre las propiedades fisicoquímicas de arcillas pilarizadas con el sistema Al/Fe. En Trabajo de Grado en Química, Universidad de Nariño.
  • PERDIGÓN, A., DEFENG, L., PESQUERA, C., GONZÁLES, F., ORTIZ, B., AGUADO, F., BLANCO, C., (2013). Synthesis of porous clay heterostructures from high charge mica – type aluminosilicates. Journal of Materials Chemistry A, 1(1), 1213 – 1219. DOI: https://doi.org/10.1039/C2TA00543C
  • PINNAVAIA, T. J., TZOU, M. S., LANDAU, S. D., RAYTHATHA, R. H., (1984). On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum. Journal of Molecular Catalysis, 27(1), 195–212. DOI: https://doi.org/10.1016/0304-5102(84)85080-4
  • VAUGHAN D.E.W., LUSSIER R.J., (1980). Preparation of molecular sieves based on pillared interlayered clays. Proceedings of the 5th International Conference on Zeolites, Naples, Rees L.V.C. Heyden, London.
  • FIGUERAS, F., (1988). Pillared clays and catalysis. Catalysis Reviews: Science and Engineering, 30, 471. DOI: https://doi.org/10.1080/01614948808080811
  • KODAMA, T., KOMARNENI, S., (1999). Na-4-mica: Cd2+, Ni2+, Co2+, Mn2+ and Zn2+ ion Exchange. Journal of Materials Chemistry, 9(1), 533–539. DOI: https://doi.org/10.1039/a806758i
  • STEUDEL A., BATENBURG L.F., FISCHER H.R., WEIDLER P.G., EMERICH K., (2009). Alteration of non-swelling clay minerals and magadiite by acid activation. Applied Clay Science, 44(1), 95–104 DOI: https://doi.org/10.1016/j.clay.2009.02.001
  • TORANZO R., VICENTE M.A., BAÑARES - MUÑOZ M.A, GANDIA L.M., GIL A., 1998). Pillaring of saponite with zirconium oligomers. Microporous and Mesoporous Materials, 24(1), 173–188. DOI: https://doi.org/10.1016/S1387-1811(98)00158-9

Downloads

Download data is not yet available.

Most read articles by the same author(s)