Síntesis De Zβ A Partir de Cenizas Volantes, Utilizadas En Liberación Controlada De Nitratos

Contenido principal del artículo

Autores

Jenny Andrea García Barrero
Mery Carolina Pazos Zarama
Javier Ramiro Chaparro Barajas
Deisy Alejandra Fonseca Martínez
Esperanza Pavón González
María Dolores Alba Carranza

Resumen

En este trabajo se sintetizó zeolita beta (Zβ) usando cenizas volantes (CV) de la central eléctrica de carbón, Termopaipa, situada en Paipa, Boyacá (Colombia). Las cenizas se utilizaron para extraer el silicio (Si) y aluminio (Al), para lo cual se realizó un pretratamiento ácido seguido de proceso hidrotérmico con NaOH.  Para la obtención de la zeolita beta se varió la fuente de silicio y aluminio del gel madre y el tiempo de cristalización, manteniendo una composición nominal igual a 50SiO2: 1Al2O3: 25TEAOH: Na2O: K2O: 17H2O. En el primer experimento, las CV aportaron la fuente de aluminio, mientras que la fuente de silicio se obtuvo a partir de las CV y sílice fumante. La síntesis hidrotérmica se realizó a 170 °C durante 40 h, lo cual condujo a la obtención de ZSM-5 junto con una fase secundaria de mordenita. En el segundo experimento, las CV aportaron la fuente de silicio y se requirió la adición de sulfato de aluminio octadecahidratado como fuente de aluminio. La síntesis hidrotérmica se realizó a 170 °C y 60 h, lo cual condujo a una Zβ de alta pureza. Las zeolitas se caracterizaron usando DRX, FTIR, SEM y XRF. Las zeolitas se modificaron usando (3-aminopropil) trietóxisilano (APTES) y bromuro de hexadeciltrimetilamonio (HDTMA-Br). Los resultados muestran que la Zβ-APTES, con una capacidad de adsorción de 5 mmol NO3-/100g tiene el mayor potencial para la aplicación de liberación controlada de fertilizantes.

Palabras clave:

Detalles del artículo

Referencias

[1] A. R. & T. B. Association, “Production and Use of Coal Combustion Products in the U.S. - Market Forecast Through 2033,” 2015.

[2] T. H. Adams, “Coal Ash Recycling Reaches Record 64 Percent Amid Shifting Production and Use Patterns,” 2018.

[3] A. Alastuey, A., Hernández, E., Lopez-Soler, A., & Plana, F, Querol, X., Moreno, N., Umaña, J. “Synthesis of zeolites from coal fly ash : an overview,” International Journal of Coal Geology vol. 50, pp. 413–423, 2002.

[4] A. M. Cardoso, M. B. Horn, L. S. Ferret, C. M. N. Azevedo, and M. Pires, “Integrated synthesis of zeolites 4A and Na–P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment,” Journal of Hazardous Materials., vol. 287, pp. 69–77, Apr. 2015,

[5] D. Ferney and M. Huertas, “SÍNTESIS Y CARACTERIZACIÓN DE ZEOLITAS A PARTIR DE CENIZAS VOLANTES DE CARBÓN,” (Bachelor's thesis).Universidad de Ciencias aplicadas y ambientales, 2016.

[6] Z. J. Zhang, J. L. Li, H. Y. Li, H. Wang, J. Zhu, and Q. He, “Dynamic formation of zeolite synthesized from fly ash by alkaline hydrothermal conversion,” Waste Management & Research., vol. 31, no. 11, pp. 1160–1169, 2013.

[7] K. T. Thomson, “Handbook of Zeolite Science and Technology. Edited by Scott M. Auerbach (University of Massachusetts, Amherst), Kathleen A. Carrado (Argonne National Laboratory), Prabir K. Dutta (The Ohio State University). Marcel Dekker, Inc.:  New York, Basel. 2003.,” 2004.

[8] D. W. Ming and E. R. Allen, “Use of natural zeolites in agronomy, horticulture, and environmental soil remediation,” Reviews in Mineralogy and Geochemistry, vol. 45, pp. 618–654, 2001.

[9] J. Jae, Tompsett, G. A., Foster, A. J., Hammond, K. D., Auerbach, S. M., Lobo, R. F., & Huber, G. W., “Investigation into the shape selectivity of zeolite catalysts for biomass conversion,” Journal of Catalysis., vol. 279, no. 2, pp. 257–268, 2011.

[10] H. Lin, Q. Zheng, Y. Dong, X. Jin, X. Zhang, and Q. Liu, “Effect of modification and regulation on physicochemical properties of clinoptilolite, as well as nitrogen and phosphates removal performance,” The Canadian Journal of Chemical Engineering, vol. 93, no. 5, pp. 825–831, 2015.

[11] S. Wang and H. Wu, “Environmental-benign utilisation of fly ash as low-cost adsorbents,” Journal of Hazardous Materials., vol. 136, no. 3, pp. 482–501, 2006.

[12] S. Sood, V. K. Gupta, S. Agarwal, K. Dev, and D. Pathania, “Controlled release of antibiotic amoxicillin drug using carboxymethyl cellulose-cl-poly(lactic acid-co-itaconic acid) hydrogel,” International Journal of Biological Macromolecules., vol. 101, pp. 612–620, Aug. 2017.

[13] A. K. Bansiwal, S. S. Rayalu, N. K. Labhasetwar, A. A. Juwarkar, and S. Devotta, “Surfactant-modified zeolite as a slow release fertilizer for phosphorus,” Journal of Agricultural and Food Chemistry., vol. 54, no. 13, pp. 4773–4779, 2006.

[14] S. A. A. Nakhli, M. Delkash, B. E. Bakhshayesh, and H. Kazemian, Application of Zeolites for Sustainable Agriculture: a Review on Water and Nutrient Retention, vol. 228, no. 12. Water, Air, & Soil Pollution, 2017.

[15] A. Rashidzadeh, A. Olad, D. Salari, and A. Reyhanitabar, “On the preparation and swelling properties of hydrogel nanocomposite based on Sodium alginate-g-Poly (acrylic acid-co-acrylamide)/Clinoptilolite and its application as slow release fertilizer,” Journal of Polymer Research,. Res., vol. 21, no. 2, 2014.

[16] Á. P. Sánchez Cepeda, “Preparación y caracterización de membranas poliméricas electrohiladas de policaprolactona y quitosano para la liberación controlada de clorhidrato de tiamina,” Ciencia En Desarrollo., vol. 7, no. 2, p. 133, 2016.

[17] C. Tejada, A. Herrera, and E. Ruiz, “Utilización de biosorbentes para la remoción de níquel y plomo en sistemas binarios.,” Ciencia En Desarrollo, vol. 7, no. 1, pp. 31–36, 2016.

[18] B. Jha and D. N. Singh, “Conventional Methods for Synthesis of Fly Ash Zeolites,” pp. 33–51. Springer, Singapore. 2016.

[19] M. A. Hernández, L. Corona, and F. Rojas, “Adsorption characteristics of natural erionite, clinoptilolite and mordenite zeolites from Mexico,” Adsorption, vol. 6, no. 1, pp. 33–45, 2000.

[20] K. Ramesh, D. D. Reddy, A. K. Biswas, and A. S. Rao, “Zeolites and Their Potential Uses in Agriculture,” Advances in Agronomy, vol. 113, pp. 215–236, 2011.

[21] S. Bakhtiary, M. Shirvani, and H. Shariatmadari, “Adsorption-desorption behavior of 2,4-D on NCP-modified bentonite and zeolite: Implications for slow-release herbicide formulations,” Chemosphere, vol. 90, no. 2, pp. 699–705, 2013.

[22] J. G. R. Muñiz, A. M. Ramírez, J. M. A. Robles, P. G. Melo, J. C. E. Bocardo, and A. M. M. Martínez, “Synthesis and characterization of high silica zeolites from coal fly ash (CFA): Two cases of zeolite syntheses from the same waste material” Latin Am. Appl. Res., vol. 40, no. 4, pp. 323–328, 2010.

[23] P. Assawasangrat, S. Neramittagapong, W. Pranee, and P. Praserthdam, “Methanol conversion to dimethyl ether over beta zeolites derived from bagasse fly ash,” Energy Sources, Part A Recovery, Utilization, and Environmental Effects, vol. 38, no. 20, pp. 3081–3088, 2016.

[24] M. A. Camblor, A. Mifsud, and J. Pérez-Pariente, “Influence of the synthesis conditions on the crystallization of zeolite Beta,” Zeolites, vol. 11, no. 8, pp. 792–797, 1991.

[25] R. K. Taylor, “Cation exchange in clays and mudrocks by methylene blue,” Journal Chemical Technology and Biotechnology., vol. 35A, no. February 1984, pp. 195–207, 1985.

[26] P. Till and G. W. Brindley, “Methylene Blue Absorption By Clay Minerals. Determination Of Surface Areas And Cation Exchange Capacities (Clay-Organic Studies Xviii),” Clays and Clay Minerals. 18(4), 203-212, 1970.

[27] K. Barczyk, W. Mozgawa, and M. Król, “Studies of anions sorption on natural zeolites,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 133, pp. 876–882, 2014.

[28] Z. Li, “Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release,” Microporous and Mesoporous Materials., vol. 61, no. 1–3, pp. 181–188, 2003.

[29] K. N. Barquist, “Synthesis and environmental adsorption applications of functionalized zeolites and iron oxide /
zeolite composites,” PhD (Doctor of Philosophy) thesis, University of Iowa. pp. 1–86, 2009.

[30] IDEAM, “Nitrato en Agua por Espectrofotometria ultravioleta,” Republica de Colombia, 2007.

[31] W. A. Bautista-Ruiz, M. Díaz-Lagos, and S. A. Martínez-Ovalle, “Caracterización de las cenizas volantes de una planta termoeléctrica para su posible uso como aditivo en la fabricación de cemento,” , Revista de Investigación, Desarrollo e Innovación, vol. 8, no. 1, p. 135, 2017.

[32] A. M. Segadaes, “Use of phase diagrams to guide ceramic production from wastes,” , Advances in Applied Ceramics ,. vol. 105, no. 1, pp. 46–54, 2006.

[33] J. A. Morales Morales, “Synthesis of hematite α-Fe2O3 nano powders by the controlled precipitation method,” Ciencia En Desarrollo., vol. 8, no. 1, pp. 99–107, 2017.

[34] P. Sharma, P. Rajaram, and R. Tomar, “Synthesis and morphological studies of nanocrystalline MOR type zeolite material,” Journal of Colloid and Interface Science., vol. 325, no. 2, pp. 547–557, 2008.

[35] J. H. C. van Hooff and J. W. Roelofsen, “Chapter 7 Techniques of Zeolite Characterization,” In Studies in Surface Science and Catalysis., vol. 58, pp. 241–283, Jan. 1991.

[36] C. Manrique, A. Guzmán, J. Pérez-Pariente, C. Márquez-Álvarez, and A. Echavarría, “Effect of synthesis conditions on zeolite Beta properties and its performance in vacuum gas oil hydrocracking activity,” Microporous and Mesoporous Materials., vol. 234, pp. 347–360, 2016.

[37] Corma, A., Moliner, M., Cantín, Á., Díaz-Cabañas, M. J., Jordá, J. L., Zhang, D., Sun, J., Jansson, K., Hovmöll, S. & Zou, X. “Synthesis and structure of polymorph B of Beta zeolite,” Chemistry of Materials. 20(9), 3218-3223.

[38] T. Ikuno, Chaikittisilp, W., Liu, Z., Iida, T., Yanaba, Y., Yoshikawa, T., ... & Okubo, T., “Structure-Directing Behaviors of Tetraethylammonium Cations toward Zeolite Beta Revealed by the Evolution of Aluminosilicate Species Formed during the Crystallization Process,” Journal of the American Chemical Society., vol. 137, no. 45, pp. 14533–14544, 2015.

[39] C. J. Van Oers, Góra-Marek, K., Sadowska, K., Mertens, M., Meynen, V., Datka, J., & Cool, P., “In situ IR spectroscopic study to reveal the impact of the synthesis conditions of zeolite β nanoparticles on the acidic properties of the resulting zeolite,” Chemical Engineering Journal. vol. 237, pp. 372–379, 2014.

[40] S. M. Auerbach, K. A. Carrado, and P. K. Dutta, Handbook of zeolite science and technology. M. Dekker, 2003.

[41] M. B. Park, S. H. Ahn, C. P. Nicholas, G. J. Lewis, and S. B. Hong, “Charge density mismatch synthesis of zeolite beta in the presence of tetraethylammonium, tetramethylammonium, and sodium ions: Influence of tetraethylammonium decomposition,” Microporous andMesoporous Materials., vol. 240, pp. 159–168, 2017.

[42] H. Kalipçilar and A. Çulfaz, “Template-free synthesis of ZSM-5 type zeolite layers on porous alumina disks,” Turkish Journal of Chemistry., vol. 31, no. 2, pp. 233–242, 2007.

[43] P. Losch, Hoff, T. C., Kolb, J. F., Bernardon, C., Tessonnier, J. P., & Louis, B., “Mesoporous ZSM-5 Zeolites in Acid Catalysis: Top-Down vs. Bottom-Up Approach,” Catalysts, vol. 7, no. 8, p. 225, Jul. 2017.

[44] M. C. Pazos Zarama, “contribución a la síntesis hidrotérmica de zeolita beta y sus posibles modificaciones con galio,” Tesis de Maestria. Universidad Nacional de Colombia, 2004.

[45] R. Zayhalvid, C. Tovar, C. Milena, and D. Djaouadi, “Síntesis y Caracterización de zeolitas con estructura jerárquica de poros como potenciales materiales para la generación de aromáticos” Tesis de Maestria. Universidad Central de Venezuela. 2016.

[46] W. Mozgawa, M. Król, and T. Bajda, “IR spectra in the studies of anion sorption on natural sorbents,” Journal of Molecular Structure., vol. 993, no. 1–3, pp. 109–114, 2011.

[47] H. N. Tran, P. Van Viet, and H. P. Chao, “Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds,” Ecotoxicology and Environmental Safety., vol. 147, no. June 2017, pp. 55–63, 2018.

[48] P. Yua, Southon, P. D., Liu, Z., Green, M. E., Hook, J. M., Antill, S. J., & Kepert, C. J., “Functionalization of Halloysite Clay Nanotubes by Grafting with Y -Aminopropyltriethoxysilane,” The Journal of Physical Chemistry C., vol. 112, pp. 15742–15751, 2008.

[49] V. Mazzini and V. S. J. Craig, “Volcano Plots Emerge from a Sea of Nonaqueous Solvents: The Law of Matching Water Affinities Extends to All Solvents,” ACS Central Science, vol. 4, no. 8, pp. 1056–1064, 2018.

[50] Y. Shi and T. Beck, “Deconstructing Free Energies in the Law of Matching Water Affinities,” The Journal of Physical Chemistry B, vol. 121, no. 9, pp. 2189–2201, 2017.

[51] D. Borja Fernández, “Series liotrópicas en la Química Macromolecular,” Anales de Quimica, vol. 112, no. 2, pp. 79–94, Jun. 2016.

[52] A. Meghdadi, “Characterizing the capacity of hyporheic sediments to attenuate groundwater nitrate loads by adsorption,” Water Research., vol. 140, pp. 364–376, 2018.

[53] E. Viglašová., Galamboš, M., Danková, Z., Krivosudský, L., Lengauer, C. L., Hood-Nowotny, R., ... & Briančin, J. “Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal,” Waste Management., vol. 79, pp. 385-394. 2018.

Descargas

La descarga de datos todavía no está disponible.