Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Síntesis De Zβ A Partir de Cenizas Volantes, Utilizadas En Liberación Controlada De Nitratos

Resumen

En este trabajo se sintetizó zeolita beta (Zβ) usando cenizas volantes (CV) de la central eléctrica de carbón, Termopaipa, situada en Paipa, Boyacá (Colombia). Las cenizas se utilizaron para extraer el silicio (Si) y aluminio (Al), para lo cual se realizó un pretratamiento ácido seguido de proceso hidrotérmico con NaOH.  Para la obtención de la zeolita beta se varió la fuente de silicio y aluminio del gel madre y el tiempo de cristalización, manteniendo una composición nominal igual a 50SiO2: 1Al2O3: 25TEAOH: Na2O: K2O: 17H2O. En el primer experimento, las CV aportaron la fuente de aluminio, mientras que la fuente de silicio se obtuvo a partir de las CV y sílice fumante. La síntesis hidrotérmica se realizó a 170 °C durante 40 h, lo cual condujo a la obtención de ZSM-5 junto con una fase secundaria de mordenita. En el segundo experimento, las CV aportaron la fuente de silicio y se requirió la adición de sulfato de aluminio octadecahidratado como fuente de aluminio. La síntesis hidrotérmica se realizó a 170 °C y 60 h, lo cual condujo a una Zβ de alta pureza. Las zeolitas se caracterizaron usando DRX, FTIR, SEM y XRF. Las zeolitas se modificaron usando (3-aminopropil) trietóxisilano (APTES) y bromuro de hexadeciltrimetilamonio (HDTMA-Br). Los resultados muestran que la Zβ-APTES, con una capacidad de adsorción de 5 mmol NO3-/100g tiene el mayor potencial para la aplicación de liberación controlada de fertilizantes.

Palabras clave

adsorción, cenizas volantes, liberación controlada, nitratos, zeolita beta

PDF

Citas

  1. A. R. & T. B. Association, “Production and Use of Coal Combustion Products in the U.S. - Market Forecast Through 2033,” 2015.
  2. T. H. Adams, “Coal Ash Recycling Reaches Record 64 Percent Amid Shifting Production and Use Patterns,” 2018.
  3. A. Alastuey, A., Hernández, E., Lopez-Soler, A., & Plana, F, Querol, X., Moreno, N., Umaña, J. “Synthesis of zeolites from coal fly ash : an overview,” International Journal of Coal Geology vol. 50, pp. 413–423, 2002. DOI: https://doi.org/10.1016/S0166-5162(02)00124-6
  4. A. M. Cardoso, M. B. Horn, L. S. Ferret, C. M. N. Azevedo, and M. Pires, “Integrated synthesis of zeolites 4A and Na–P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment,” Journal of Hazardous Materials., vol. 287, pp. 69–77, Apr. 2015, DOI: https://doi.org/10.1016/j.jhazmat.2015.01.042
  5. D. Ferney and M. Huertas, “SÍNTESIS Y CARACTERIZACIÓN DE ZEOLITAS A PARTIR DE CENIZAS VOLANTES DE CARBÓN,” (Bachelor's thesis).Universidad de Ciencias aplicadas y ambientales, 2016.
  6. Z. J. Zhang, J. L. Li, H. Y. Li, H. Wang, J. Zhu, and Q. He, “Dynamic formation of zeolite synthesized from fly ash by alkaline hydrothermal conversion,” Waste Management & Research., vol. 31, no. 11, pp. 1160–1169, 2013. DOI: https://doi.org/10.1177/0734242X13502381
  7. K. T. Thomson, “Handbook of Zeolite Science and Technology. Edited by Scott M. Auerbach (University of Massachusetts, Amherst), Kathleen A. Carrado (Argonne National Laboratory), Prabir K. Dutta (The Ohio State University). Marcel Dekker, Inc.: New York, Basel. 2003.,” 2004.
  8. D. W. Ming and E. R. Allen, “Use of natural zeolites in agronomy, horticulture, and environmental soil remediation,” Reviews in Mineralogy and Geochemistry, vol. 45, pp. 618–654, 2001. DOI: https://doi.org/10.2138/rmg.2001.45.18
  9. J. Jae, Tompsett, G. A., Foster, A. J., Hammond, K. D., Auerbach, S. M., Lobo, R. F., & Huber, G. W., “Investigation into the shape selectivity of zeolite catalysts for biomass conversion,” Journal of Catalysis., vol. 279, no. 2, pp. 257–268, 2011. DOI: https://doi.org/10.1016/j.jcat.2011.01.019
  10. H. Lin, Q. Zheng, Y. Dong, X. Jin, X. Zhang, and Q. Liu, “Effect of modification and regulation on physicochemical properties of clinoptilolite, as well as nitrogen and phosphates removal performance,” The Canadian Journal of Chemical Engineering, vol. 93, no. 5, pp. 825–831, 2015. DOI: https://doi.org/10.1002/cjce.22139
  11. S. Wang and H. Wu, “Environmental-benign utilisation of fly ash as low-cost adsorbents,” Journal of Hazardous Materials., vol. 136, no. 3, pp. 482–501, 2006. DOI: https://doi.org/10.1016/j.jhazmat.2006.01.067
  12. S. Sood, V. K. Gupta, S. Agarwal, K. Dev, and D. Pathania, “Controlled release of antibiotic amoxicillin drug using carboxymethyl cellulose-cl-poly(lactic acid-co-itaconic acid) hydrogel,” International Journal of Biological Macromolecules., vol. 101, pp. 612–620, Aug. 2017. DOI: https://doi.org/10.1016/j.ijbiomac.2017.03.103
  13. A. K. Bansiwal, S. S. Rayalu, N. K. Labhasetwar, A. A. Juwarkar, and S. Devotta, “Surfactant-modified zeolite as a slow release fertilizer for phosphorus,” Journal of Agricultural and Food Chemistry., vol. 54, no. 13, pp. 4773–4779, 2006. DOI: https://doi.org/10.1021/jf060034b
  14. S. A. A. Nakhli, M. Delkash, B. E. Bakhshayesh, and H. Kazemian, Application of Zeolites for Sustainable Agriculture: a Review on Water and Nutrient Retention, vol. 228, no. 12. Water, Air, & Soil Pollution, 2017. DOI: https://doi.org/10.1007/s11270-017-3649-1
  15. A. Rashidzadeh, A. Olad, D. Salari, and A. Reyhanitabar, “On the preparation and swelling properties of hydrogel nanocomposite based on Sodium alginate-g-Poly (acrylic acid-co-acrylamide)/Clinoptilolite and its application as slow release fertilizer,” Journal of Polymer Research,. Res., vol. 21, no. 2, 2014. DOI: https://doi.org/10.1007/s10965-013-0344-9
  16. Á. P. Sánchez Cepeda, “Preparación y caracterización de membranas poliméricas electrohiladas de policaprolactona y quitosano para la liberación controlada de clorhidrato de tiamina,” Ciencia En Desarrollo., vol. 7, no. 2, p. 133, 2016. DOI: https://doi.org/10.19053/01217488.v7.n2.2016.4818
  17. C. Tejada, A. Herrera, and E. Ruiz, “Utilización de biosorbentes para la remoción de níquel y plomo en sistemas binarios.,” Ciencia En Desarrollo, vol. 7, no. 1, pp. 31–36, 2016. DOI: https://doi.org/10.19053/01217488.4228
  18. B. Jha and D. N. Singh, “Conventional Methods for Synthesis of Fly Ash Zeolites,” pp. 33–51. Springer, Singapore. 2016. DOI: https://doi.org/10.1007/978-981-10-1404-8_3
  19. M. A. Hernández, L. Corona, and F. Rojas, “Adsorption characteristics of natural erionite, clinoptilolite and mordenite zeolites from Mexico,” Adsorption, vol. 6, no. 1, pp. 33–45, 2000. DOI: https://doi.org/10.1023/A:1008943031277
  20. K. Ramesh, D. D. Reddy, A. K. Biswas, and A. S. Rao, “Zeolites and Their Potential Uses in Agriculture,” Advances in Agronomy, vol. 113, pp. 215–236, 2011. DOI: https://doi.org/10.1016/B978-0-12-386473-4.00004-X
  21. S. Bakhtiary, M. Shirvani, and H. Shariatmadari, “Adsorption-desorption behavior of 2,4-D on NCP-modified bentonite and zeolite: Implications for slow-release herbicide formulations,” Chemosphere, vol. 90, no. 2, pp. 699–705, 2013. DOI: https://doi.org/10.1016/j.chemosphere.2012.09.052
  22. J. G. R. Muñiz, A. M. Ramírez, J. M. A. Robles, P. G. Melo, J. C. E. Bocardo, and A. M. M. Martínez, “Synthesis and characterization of high silica zeolites from coal fly ash (CFA): Two cases of zeolite syntheses from the same waste material” Latin Am. Appl. Res., vol. 40, no. 4, pp. 323–328, 2010.
  23. P. Assawasangrat, S. Neramittagapong, W. Pranee, and P. Praserthdam, “Methanol conversion to dimethyl ether over beta zeolites derived from bagasse fly ash,” Energy Sources, Part A Recovery, Utilization, and Environmental Effects, vol. 38, no. 20, pp. 3081–3088, 2016. DOI: https://doi.org/10.1080/15567036.2015.1124945
  24. M. A. Camblor, A. Mifsud, and J. Pérez-Pariente, “Influence of the synthesis conditions on the crystallization of zeolite Beta,” Zeolites, vol. 11, no. 8, pp. 792–797, 1991. DOI: https://doi.org/10.1016/S0144-2449(05)80057-0
  25. R. K. Taylor, “Cation exchange in clays and mudrocks by methylene blue,” Journal Chemical Technology and Biotechnology., vol. 35A, no. February 1984, pp. 195–207, 1985. DOI: https://doi.org/10.1002/jctb.5040350407
  26. P. Till and G. W. Brindley, “Methylene Blue Absorption By Clay Minerals. Determination Of Surface Areas And Cation Exchange Capacities (Clay-Organic Studies Xviii),” Clays and Clay Minerals. 18(4), 203-212, 1970. DOI: https://doi.org/10.1346/CCMN.1970.0180404
  27. K. Barczyk, W. Mozgawa, and M. Król, “Studies of anions sorption on natural zeolites,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 133, pp. 876–882, 2014. DOI: https://doi.org/10.1016/j.saa.2014.06.065
  28. Z. Li, “Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release,” Microporous and Mesoporous Materials., vol. 61, no. 1–3, pp. 181–188, 2003. DOI: https://doi.org/10.1016/S1387-1811(03)00366-4
  29. K. N. Barquist, “Synthesis and environmental adsorption applications of functionalized zeolites and iron oxide /
  30. zeolite composites,” PhD (Doctor of Philosophy) thesis, University of Iowa. pp. 1–86, 2009.
  31. IDEAM, “Nitrato en Agua por Espectrofotometria ultravioleta,” Republica de Colombia, 2007.
  32. W. A. Bautista-Ruiz, M. Díaz-Lagos, and S. A. Martínez-Ovalle, “Caracterización de las cenizas volantes de una planta termoeléctrica para su posible uso como aditivo en la fabricación de cemento,” , Revista de Investigación, Desarrollo e Innovación, vol. 8, no. 1, p. 135, 2017. DOI: https://doi.org/10.19053/20278306.v8.n1.2017.7374
  33. A. M. Segadaes, “Use of phase diagrams to guide ceramic production from wastes,” , Advances in Applied Ceramics ,. vol. 105, no. 1, pp. 46–54, 2006. DOI: https://doi.org/10.1179/174329006X82927
  34. J. A. Morales Morales, “Synthesis of hematite α-Fe2O3 nano powders by the controlled precipitation method,” Ciencia En Desarrollo., vol. 8, no. 1, pp. 99–107, 2017. DOI: https://doi.org/10.19053/01217488.v8.n1.2017.4494
  35. P. Sharma, P. Rajaram, and R. Tomar, “Synthesis and morphological studies of nanocrystalline MOR type zeolite material,” Journal of Colloid and Interface Science., vol. 325, no. 2, pp. 547–557, 2008. DOI: https://doi.org/10.1016/j.jcis.2008.05.058
  36. J. H. C. van Hooff and J. W. Roelofsen, “Chapter 7 Techniques of Zeolite Characterization,” In Studies in Surface Science and Catalysis., vol. 58, pp. 241–283, Jan. 1991. DOI: https://doi.org/10.1016/S0167-2991(08)63605-8
  37. C. Manrique, A. Guzmán, J. Pérez-Pariente, C. Márquez-Álvarez, and A. Echavarría, “Effect of synthesis conditions on zeolite Beta properties and its performance in vacuum gas oil hydrocracking activity,” Microporous and Mesoporous Materials., vol. 234, pp. 347–360, 2016. DOI: https://doi.org/10.1016/j.micromeso.2016.07.017
  38. Corma, A., Moliner, M., Cantín, Á., Díaz-Cabañas, M. J., Jordá, J. L., Zhang, D., Sun, J., Jansson, K., Hovmöll, S. & Zou, X. “Synthesis and structure of polymorph B of Beta zeolite,” Chemistry of Materials. 20(9), 3218-3223. DOI: https://doi.org/10.1021/cm8002244
  39. T. Ikuno, Chaikittisilp, W., Liu, Z., Iida, T., Yanaba, Y., Yoshikawa, T., ... & Okubo, T., “Structure-Directing Behaviors of Tetraethylammonium Cations toward Zeolite Beta Revealed by the Evolution of Aluminosilicate Species Formed during the Crystallization Process,” Journal of the American Chemical Society., vol. 137, no. 45, pp. 14533–14544, 2015. DOI: https://doi.org/10.1021/jacs.5b11046
  40. C. J. Van Oers, Góra-Marek, K., Sadowska, K., Mertens, M., Meynen, V., Datka, J., & Cool, P., “In situ IR spectroscopic study to reveal the impact of the synthesis conditions of zeolite β nanoparticles on the acidic properties of the resulting zeolite,” Chemical Engineering Journal. vol. 237, pp. 372–379, 2014. DOI: https://doi.org/10.1016/j.cej.2013.10.041
  41. S. M. Auerbach, K. A. Carrado, and P. K. Dutta, Handbook of zeolite science and technology. M. Dekker, 2003. DOI: https://doi.org/10.1201/9780203911167
  42. M. B. Park, S. H. Ahn, C. P. Nicholas, G. J. Lewis, and S. B. Hong, “Charge density mismatch synthesis of zeolite beta in the presence of tetraethylammonium, tetramethylammonium, and sodium ions: Influence of tetraethylammonium decomposition,” Microporous andMesoporous Materials., vol. 240, pp. 159–168, 2017. DOI: https://doi.org/10.1016/j.micromeso.2016.11.013
  43. H. Kalipçilar and A. Çulfaz, “Template-free synthesis of ZSM-5 type zeolite layers on porous alumina disks,” Turkish Journal of Chemistry., vol. 31, no. 2, pp. 233–242, 2007.
  44. P. Losch, Hoff, T. C., Kolb, J. F., Bernardon, C., Tessonnier, J. P., & Louis, B., “Mesoporous ZSM-5 Zeolites in Acid Catalysis: Top-Down vs. Bottom-Up Approach,” Catalysts, vol. 7, no. 8, p. 225, Jul. 2017. DOI: https://doi.org/10.3390/catal7080225
  45. M. C. Pazos Zarama, “contribución a la síntesis hidrotérmica de zeolita beta y sus posibles modificaciones con galio,” Tesis de Maestria. Universidad Nacional de Colombia, 2004.
  46. R. Zayhalvid, C. Tovar, C. Milena, and D. Djaouadi, “Síntesis y Caracterización de zeolitas con estructura jerárquica de poros como potenciales materiales para la generación de aromáticos” Tesis de Maestria. Universidad Central de Venezuela. 2016.
  47. W. Mozgawa, M. Król, and T. Bajda, “IR spectra in the studies of anion sorption on natural sorbents,” Journal of Molecular Structure., vol. 993, no. 1–3, pp. 109–114, 2011. DOI: https://doi.org/10.1016/j.molstruc.2010.11.070
  48. H. N. Tran, P. Van Viet, and H. P. Chao, “Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds,” Ecotoxicology and Environmental Safety., vol. 147, no. June 2017, pp. 55–63, 2018. DOI: https://doi.org/10.1016/j.ecoenv.2017.08.027
  49. P. Yua, Southon, P. D., Liu, Z., Green, M. E., Hook, J. M., Antill, S. J., & Kepert, C. J., “Functionalization of Halloysite Clay Nanotubes by Grafting with Y -Aminopropyltriethoxysilane,” The Journal of Physical Chemistry C., vol. 112, pp. 15742–15751, 2008. DOI: https://doi.org/10.1021/jp805657t
  50. V. Mazzini and V. S. J. Craig, “Volcano Plots Emerge from a Sea of Nonaqueous Solvents: The Law of Matching Water Affinities Extends to All Solvents,” ACS Central Science, vol. 4, no. 8, pp. 1056–1064, 2018. DOI: https://doi.org/10.1021/acscentsci.8b00348
  51. Y. Shi and T. Beck, “Deconstructing Free Energies in the Law of Matching Water Affinities,” The Journal of Physical Chemistry B, vol. 121, no. 9, pp. 2189–2201, 2017. DOI: https://doi.org/10.1021/acs.jpcb.7b00104
  52. D. Borja Fernández, “Series liotrópicas en la Química Macromolecular,” Anales de Quimica, vol. 112, no. 2, pp. 79–94, Jun. 2016.
  53. A. Meghdadi, “Characterizing the capacity of hyporheic sediments to attenuate groundwater nitrate loads by adsorption,” Water Research., vol. 140, pp. 364–376, 2018. DOI: https://doi.org/10.1016/j.watres.2018.04.063
  54. E. Viglašová., Galamboš, M., Danková, Z., Krivosudský, L., Lengauer, C. L., Hood-Nowotny, R., ... & Briančin, J. “Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal,” Waste Management., vol. 79, pp. 385-394. 2018. DOI: https://doi.org/10.1016/j.wasman.2018.08.005

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede {advancedSearchLink} para este artículo.