Biomass production and essential oil content and composition in basil hydroponic systems using treated domestic effluents

Producción de biomasa, contenido y composición del aceite esencial de albahaca en sistemas hidropónicos utilizando efluentes domésticos tratados

Main Article Content

Lucylia Suzart Alves
Hans Raj Gheyi
Mairton Gomes da Silva
Vital Pedro da Silva Paz

Abstract

Reusing domestic wastewater is an alternative for irrigated agriculture, helping to decrease pressure on good quality water. This study aimed to evaluate the biomass production and essential oil content and composition in the basil genotypes ‘Alfavaca Basilicão’ and ‘Grecco a Palla’ with different plant spacing in hydroponic systems. Two experiments were carried out between March and May (Experiment I) and July and September of 2015 (Experiment II) in a completely randomized design with four replicates in a 2×3 factorial arrangement. In Experiment I, two hydroponic systems (Laminar Nutrient Flow Technique - NFT and Deep Nutrient Flow Technique - DFT) and three plant spacings in hydroponic channels (0.20, 0.30, and 0.40 m) were evaluated. In Experiment II in the DFT hydroponic system, two types of water (tap water and treated domestic effluents) and three nutrient solution recirculation intervals (at intervals of 2, 4, and 6 h) were evaluated. In general, the dry biomass per plant, oil content and oil yield of the two basil genotypes were not influenced by the hydroponic systems, plant spacing, or water type. In Experiment II, the increase between the recirculation intervals (4 or 6 h) negatively affected genotype ‘Grecco a Palla’. Linalool was the major constituent in the essential oil of the two basil genotypes, ranging from 47.00 to 70.10% (Experiment I) and from 59.47 to 63.64% (Experiment II) in genotype ‘Alfavaca Basilicão’; in genotype ‘Grecco a Palla’, it ranged from 10.19 to 43.03% (Experiment I) and from 19.94 to 53.37% (Experiment II).

Keywords:

Downloads

Download data is not yet available.

Article Details

References (SEE)

Adams, R.P. 2007. Identification of essential oil components by gas chromatograpy/mass spectroscopy. 4th ed. Allured Publishing Corporation, Carol Stream, IL.

Alemu, A., W. Garedew, and A. Gebre. 2018. Essential oil yield and yield components of basil (Ocimum basilicum L.) as affected by genotype and intrarow spacing at Jimma, SW Ethiopia. Acta Agrobot. 71(3), 1743. Doi: 10.5586/aa.1743

Alves, L.S., H.R. Gheyi, V.P.S. Paz, A.N. Santos, M.G. Silva, and S.S. Bandeira. 2019. Cultivo de manjericão utilizando efluente doméstico tratado em sistemas hidropônicos sob diferentes espaçamentos entre plantas. Irriga 24(3), 460-472. Doi: 10.15809/irriga.2019v24n3p460-472

Alves, L.S., V.P.S. Paz, A.J.P. Silva, G.X.S. Oliveira, F.E.R. Oliveira, and E.L. Amorim. 2015. Teor, rendimento e composição química do óleo essencial de plantas de manjericão submetidas ao estresse salino com NaCl. Rev. Bras. Plantas Med. 17(4), 807-813. Doi: 10.1590/1983-084X/14_031

Arabaci, O. and E. Bayram. 2004. The effect of nitrogen fertilization and different plant densities on some agronomic and technologic characteristic of Ocimum basilicum L. (basil). J. Agron. 3(4), 255-262. Doi: 10.3923/ja.2004.255.262

Azevedo Neto, A.D., R.V. Menezes, H.R. Gheyi, P.C.C. Silva, A.M.W. Cova, R.F. Ribas, and M.O. Ribeiro. 2019. Salt-induced changes in solutes, pigments and essential oil of two basil (Ocimum basilicum L.) genotypes under hydroponic cultivation. Aust. J. Crop Sci. 13(11), 1856-1864. Doi: 10.21475/ajcs.19.13.11.p2015

Bione, M.A.A., V.P.S. Paz, F. Silva, R.F. Ribas, and T.M. Soares. 2014. Crescimento e produção de manjericão em sistema hidropônico NFT sob salinidade. Rev. Bras. Eng. Agríc. Ambient. 18(12), 1228-1234. Doi: 10.1590/1807-1929/agriambi.v18n12p1228-1234

Cifuentes‐Torres, L., L.G. Mendoza‐Espinosa, G. Correa‐Reyes, and L.W. Daesslé. 2020. Hydroponics with wastewater: a review of trends and opportunities. Water Environ. J. 35(1), 166-180. Doi: 10.1111/wej.12617

Ciriello, M., A. Pannico, C. El-Nakhel, L. Formisano, F. Cristofano, L.G. Duri, F. Pizzolongo, R. Romano, S. De Pascale, G. Colla, M. Cardarelli, and Y. Rouphael. 2020. Sweet basil functional quality as shaped by genotype and macronutrient concentration reciprocal action. Plants 9, 1786. Doi: 10.3390/plants9121786

Clevenger, J.F. 1928. Apparatus for the determination of volatile oil. J. Am. Pharm. Assoc. 17(4), 345-349. Doi: 10.1002/jps.3080170407

Cova, A.M.W., F.T.O. Freitas, P.C. Viana, M.R.S. Rafael, A.D. Azevedo Neto, and T.M. Soares. 2017. Content of inorganic solutes in lettuce grown with brackish water in different hydroponic systems. Rev. Bras. Eng. Agríc. Ambient. 21(3), 150-155. Doi: 10.1590/1807-1929/agriambi.v21n3p150-155

Cuba, R.S., J.R. Carmo, C.F. Souza, and R.G. Bastos. 2015. Potencial de efluente de esgoto doméstico tratado como fonte de água e nutrientes no cultivo hidropônico de alface. Rev. Ambient. Água 10(3), 574-586. Doi: 10.4136/ambi-agua.1575

Daneshian, J., M. Yousef, P. Zandi, P. Jonoubi, and L. Khatibani. 2011. Effect of planting density and cattle manure on some qualitative and quantitative traits in two basil varieties under Guilan condition, Iran. Am. Eurasian J. Agric. Environ. Sci. 11(1), 95-103.

Daryadar, M. 2017. Comparative description of essential oil quantitative and qualitative indexes during the growth and development of sweet basil in conditions of the newest water-stream hydroponics. J. Civil Environ. Eng. 7(2), 1000271. Doi: 10.4172/2165-784X.1000271

Egbuikwem, P.N., J.C. Mierzwa, and D.P. Saroj. 2020. Assessment of suspended growth biological process for treatment and reuse of mixed wastewater for irrigation of edible crops under hydroponic conditions. Agric. Water Manag. 231, 106034. Doi: 10.1016/j.agwat.2020.106034

Fuentes-Castañeda, O., M.L. Domínguez-Patiño, J. Domínguez-Patiño, R.M. Melgoza-Alemán, and O.G. Villegas-Torres. 2016. Effect of electric field on the kinetics of growth of lettuce (Lactuca sativa) in a hydroponic system. J. Agric. Chem. Environ. 5(3), 113-120. Doi: 10.4236/jacen.2016.53013

Furlani, P.R., L.C.P. Silveira, D. Bolonhezi, and V. Faquin. 1999. Cultivo hidropônico de plantas. IAC, Campinas, Brazil.

Gonçalves, K.S., L.S. Alves, V.P.S. Paz, and S.S. Bandeira. 2019. Chlorophyll fluorescence of basil plants cultivated in a hydroponic system using treated domestic wastewater. Eng. Agríc. 39(3), 288-293. Doi: 10.1590/1809-4430-eng.agric.v39n3p288-293/2019

Gondim Filho, H., P.C.C. Silva, M.G. Silva, M.M. Pereira, T.M. Soares, A.D. Azevedo Neto, R.S. Vasconcelos, and H.R. Gheyi. 2018. Growth, production and essential oil content of basil genotypes in hydroponic conditions under salt stress. J. Exp. Agric. Int. 25(1), 1-10. Doi: 10.9734/JEAI/2018/43023

Hassanpouraghdam, M.B., G.R. Gohari, S.J. Tabatabaei, and M.R. Dadpour. 2010. Inflorescence and leaves essential oil composition of hydroponically grown Ocimum basilicum L. J. Serb. Chem. Soc. 75(10), 1361-1368. Doi: 10.2298/JSC100311113H

Heidari, M. 2012. Effects of salinity stress on growth, chlorophyll content and osmotic components of two basil (Ocimum basilicum L.) genotypes. Afr. J. Biotechnol. 11(2), 379-384. Doi: 10.5897/AJB11.2572

Maboko, M.M. and C.P. Du Plooy. 2013. High-plant density planting of basil (Ocimum basilicum) during summer/fall growth season improves yield in a closed hydroponic system. Acta Agric. Scand. B Soil Plant Sci. 63(8), 748-752. Doi: 10.1080/09064710.2013.861921

McLafferty, F.W. and D. Stauffer. 1989. Registry of spectral data. John Wiley & Sons, New York, NY.

Riera-Vila, I., N.O. Anderson, C.F. Hodge, and M. Rogers. 2019. Anaerobically-digested brewery wastewater as a nutrient solution for substrate-based food production. Horticulturae 5(2), 43. Doi: 10.3390/horticulturae5020043

Saha, S., A. Monroe, and M.R. Day. 2016. Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems. Ann. Agric. Sci. 61(2), 181-186. Doi: 10.1016/j.aoas.2016.10.001

Santos, A.C., M.G. Silva, C.L. Boechat, D.S. Chagas, and W.S. Mendes. 2018. Brackish water: an option for producing hydroponic Capsicum annuum in laminar flows of mineral nutrients. Rev. Colomb. Cienc. Hortic. 12(1), 147-155. Doi: 10.17584/rcch.2018v12i1.7446

Santos, J.F., M.A. Coelho Filho, J.L. Cruz, T.M. Soares, and A.M.L. Cruz. 2019. Growth, water consumption and basil production in the hydroponic system under salinity. Rev. Ceres 66(1), 45-53. Doi: 10.1590/0034-737x201966010007

Santos Júnior, J.A., H.R. Gheyi, A.R. Cavalcante, S.S. Medeiros, N.S. Dias, and D.B. Santos. 2015. Water use efficiency of coriander produced in a low-cost hydroponic system. Rev. Bras. Eng. Agríc. Ambient. 19(12), 1152-1158. Doi: 10.1590/1807-1929/agriambi.v19n12p1152-1158

Silva, H.H.B., A.D. Azevedo Neto, R.V. Menezes, P.C.C. Silva, and H.R. Gheyi. 2019. Use of hydrogen peroxide in acclimation of basil (Ocimum basilicum L.) to salt stress. Turk. J. Bot. 43(2), 208-217. Doi: 10.3906/bot-1807-80

Silva, M.G., L.S. Alves, T.M. Soares, H.R. Gheyi, and M.A.A. Bione. 2020b. Growth, production and water use efficiency of chicory (Cichorium endivia L.) in hydroponic systems using brackish waters. Adv. Hortic. Sci. 34(3), 243-253. Doi: 10.13128/ahsc-8855

Silva, M.G., I.S. Oliveira, T.M. Soares, H.R. Gheyi, G.O. Santana, and J.S. Pinho. 2018. Growth, production and water consumption of coriander in hydroponic system using brackish waters. Rev. Bras. Eng. Agríc. Ambient. 22(8), 547-552. Doi: 10.1590/1807-1929/agriambi.v22n8p547-552

Silva, M.G., T.M. Soares, H.R. Gheyi, I.P. Costa, and R.S. Vasconcelos. 2020a. Growth, production and water consumption of coriander grown under different recirculation intervals and nutrient solution depths in hydroponic channels. Emir. J. Food Agric. 32(4), 281-294. Doi: 10.9755/ejfa.2020.v32.i4.2094

Silva, M.G., T.M. Soares, H.R. Gheyi, I.S. Oliveira, J.A. Silva Filho, and F.F. Carmo. 2016. Frequency of recirculation of the nutrient solution in the hydroponic cultivation of coriander with brackish water. Rev. Bras. Eng. Agríc. Ambient. 20(5), 447-454. Doi: 10.1590/1807-1929/agriambi.v20n5p447-454

Skrypnik, L., A. Novikova, and E. Tokupova. 2019. Improvement of phenolic compounds, essential oil content and antioxidant properties of sweet basil (Ocimum basilicum L.) depending on type and concentration of selenium application. Plants 8, 458. Doi: 10.3390/plants8110458

Veloso, R.A., H.G. Castro, L.C.A. Barbosa, D.P. Cardoso, A.F. Chagas Júnior, and G.N. Scheidt. 2014. Teor e composição do óleo essencial de quatro acessos e duas cultivares de manjericão (Ocimum basilicum L.). Rev. Bras. Plantas Med. 16(2), 364-371. Doi: 10.1590/1983-084X/12_180

Walters, K.J. 2015. Quantifying the effects of hydroponic systems, nutrient solution, and air temperature on growth and development of basil (Ocimum L.) species. MSc thesis. Iowa State University, Ames, IA.

Walters, K.J. and C.J. Currey. 2015. Hydroponic greenhouse basil production: Comparing systems and cultivars. HortTechnology 25(5), 645-650. Doi: 10.21273/HORTTECH.25.5.645

Citado por: