Skip to main navigation menu Skip to main content Skip to site footer

Excess of zinc reduces the growth of bulb onion plants (Allium cepa L.)

Harvest of bulb onion in Boyaca, Colombia. Photo: F. Casierra-Posada

Abstract

While zinc (Zn) is an essential element for plant metabolism, anthropic activities and poor agricultural practices as well as frequent use of pesticides and fertilizers rich in this element can cause toxic levels of Zn to plants. A study was done under greenhouse conditions in Tunja, Colombia in which bulb onion seedlings (Allium cepa L.) were exposed to 0 (control), 20, 40, and 80 mg L-1 of Zn in mixture with a nutrient solution containing macro and micronutrients. The excess Zn in the solution had a rather drastic effect on the accumulation of dry weight and reduced the absolute growth rate, the specific leaf area, the water uptake, the water use efficiency, the leaf area, the length of all roots per plant, and on the contrary, increased the content of total soluble solids in the juice of the bulb. Thus, most growth-related variables were negatively affected from 20 mg L-1 and up of Zn in solution. In addition, the toxic effect of Zn is more drastic on plants growing in nutrient solution compared to those growing in soil. The experiment lasted until 54 days after transplanting, which was the limit for plant survival, especially at higher concentrations of Zn, so it can be inferred that these plants have low tolerance to high Zn contents in the substrate.

Keywords

Dry weight, Heavy metals, Leaf area, Stress, Tolerance, Water relations

VIDEO (Español) XML PDF

References

  1. Abou El-Nasr, M.K., H.M. El-Hennawy, M.S.F. Samaan, T.A. Salaheldin, A. Abou El-Yazied, and A. El-Kereamy. 2021. Using zinc oxide nanoparticles to improve the color and berry quality of figle grapes cv. Crimson seedless. Plants 10(7) 1285. Doi: https://doi.org/10.3390/plants10071285
  2. Ajakaiye, M.B. and J.K. Greig. 1976. Response of 'Sweet spanish' onion to soil-applied zinc. J Am. Soc. Hort. Sci. 101(5), 592-596.
  3. Alengebawy, A., S.T. Abdelkhalek, S.R. Qureshi, and M.-Q. Wang. 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics 9(3), 42. Doi: https://doi.org/10.3390/toxics9030042
  4. Benitez, N., D.H. Vivas, and E.D. Rosero. 2009. Toxicidad de los principales plaguicidas utilizados en el municipio de Popayán, usando Bacillus subtillis. Biotecnol. Sector Agropecu. Agroind. 7(1), 15-22.
  5. Cakmak, I., P. Brown, J.M. Colmenero-Flores, S. Husted, B.Y. Kutman, M. Nikolic, Z. Rengel, S.B. Schmidt, and F.-J. Zhao. 2023. Micronutrients. pp. 283-385. In: Rengel, Z., I. Cakmak, and P.J. White (eds.). Marschner’s mineral nutrition of plants. 4th ed. Elsevier, Amsterdam, Netherlands. Doi: https://doi.org/10.1016/B978-0-12-819773-8.00017-4
  6. Casierra-Posada, F., L.A. González, and C. Ulrichs. 2010. Growth of broccoli plants (Brassica oleracea L. var. Italica) affected by excess zinc. Rev. Colomb. Cienc. Hortic. 4(2), 163-174. Doi: https://doi.org/10.17584/rcch.2010v4i2.1237
  7. Casierra-Posada, F. and J. Poveda. 2005. La toxicidad por exceso de Mn y Zn disminuye la producción de materia seca, los pigmentos foliares y la calidad del fruto en fresa (Fragaria sp. cv. Camarosa). Agron. Colomb. 23(2), 283-289.
  8. Casierra-Posada, F., C. Ulrichs, c. Büttner, and C. Pérez. 2012. Growth of spinach plants (Spinacia oleracea L.) exposed to excess zinc and manganese. Agron. Colomb. 30(3), 344-350. https://repositorio.unal.edu.co/handle/unal/48723
  9. Casierra-Posada, F. and N.J. Vargas. 2015. Fisiología del crecimiento y la nutrición en cebolla de bulbo (Allium cepa L. hib. ‘Yellow Granex’) en condiciones tropicales. Editorial UPTC, Tunja, Colombia.
  10. Feigl, G., N. Lehotai, A. Molnár, A. Ördög, M. Rodríguez-Ruiz, J.M. Palma, F.J. corpas, L. Erdei, and Z. Kolbert. 2015. Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Ann. Bot. 116, 613-625. Doi: https://doi.org/10.1093/aob/mcu246
  11. Feigl, G., A. Molnár, R. Szőllősi, A. Ördög, K. Törőcsik, D. Oláh, A. Bodor, K. Perei, and Z. Kolbert. 2019. Zinc-induced root architectural changes of rhizotron-grown B. napus correlate with a differential nitro-oxidative response. Nitric Oxide 90, 55-65. Doi: https://doi.org/10.1016/j.niox.2019.06.003
  12. Fischer, G. and F.L. Fischer-García. 2023. Heavy metal contamination of vegetables in urban and peri-urban areas. An overview. Rev. Colomb. Cienc. Hortic. 17(2), e16011. Doi: https://doi.org/10.17584/rcch.2023v17i2.16099
  13. Ghosh, M., S. Bhadra, A. Adegoke, M. Bandyopadhyay, and A. Mukherjee. 2015. MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hypermethylation. Mutat. Res. 774, 49-58. Doi: https://doi.org/10.1016/j.mrfmmm.2015.03.004
  14. Hamal, J.P. and M.K. Chettri. 2022. Impact of heavy metals and biochemical parameters on specific leaf area of roadside trees in Kathmandu, Nepal. Ecol. Environ. Conserv. 28(3), 1108-1118. Doi: https://doi.org/10.53550/EEC.2022.v28i03.005
  15. Hassan, M.U., M. Nawaz, A. Mahmood, A.A. Shah, A.N. Shah, F. Muhammad, M. Batool, A. Rasheed, M. Jaremko, N.R. Abdelsalam, M.E. Hasan, and S.H. Qari. 2022. The role of zinc to mitigate heavy metals toxicity in crops. Front. Environ. Sci. 10, 990223. Doi: https://doi.org/10.3389/fenvs.2022.990223
  16. Hunt, R. 1990. Basic growth analysis. Plant growth analysis for beginners. Springer, London. Doi: https://doi.org/10.1007/978-94-010-9117-6
  17. Hussain, A., S. Ali, M. Rizwan, M.Z. Rehman, A. Hameed, F. Hafeez, S.A. Alamri, M.N. Alyemeni. and L. Wijaya. 2018. Role of zinc–lysine on growth and chromium uptake in rice plants under Cr stress. J. Plant Growth Regul. 37(4), 1413-1422. Doi: https://doi.org/10.1007/s00344-018-9831-x
  18. Hussain, S., M. Khan, T.M.M. Sheikh, M.Z. Mumtaz, T.A. Chohan, S. Shamim, and Y. Liu. 2022. Zinc essentiality, toxicity, and its bacterial bioremediation: a comprehensive insight. Front. Microbiol. 13, 900740. Doi: https://doi.org/10.3389/fmicb.2022.900740
  19. Kaur, H. and N. Garg. 2021. Zinc toxicity in plants: a review. Planta 253(6), 129. Doi: https://doi.org/10.1007/s00425-021-03642-z
  20. Liu, T., C. Zhang, G. Yang, J. Wu, G. Xie, H. Zeng, C. Yin, and T. Liu. 2009. Central composite design-based analysis of specific leaf area and related agronomic factors in cultivars of rapeseed (Brassica napus L.). Field Crops Res. 111(1-2), 92-96. Doi: https://doi.org/10.1016/j.fcr.2008.11.001
  21. Mahmoudi, H., I.B. Salah, W. Zaouali, W. Zorrig, A. Smaoui, T. Ali, M. Gruber, Z. Ouerghi, and K. Hosni. 2021. Impact of zinc excess on germination, growth parameters and oxidative stress of sweet basil (Ocimum basilicum L.). Bull. Environ. Cont. Toxicol. 106(5), 899-907. Doi: https://doi.org/10.1007/s00128-021-03188-6
  22. Nekoukhou, M., S. Fallah, A. Abbasi-Surki, L.R. Pokhrel, and A. Rostamnejadi. 2022. Improved efficacy of foliar application of zinc oxide nanoparticles on zinc biofortification, primary productivity and secondary metabolite production in dragonhead. J. Clean Prod. 379(2), 134803. Doi: https://doi.org/10.1016/j.jclepro.2022.134803
  23. Oprea, B.Ş., D.-M. Motelică, N.O. Vrînceanu, M. Costea, G.I. Plopeanu, and V. Carabulea. 2022. Research on the heavy metal content in onion bulbs correlated with soil from private households located in the Copşa Mică area, central Romania. J. Appl. Life Sci. Environ. 55(1), 92-99. Doi: https://doi.org/10.46909/alse-551049
  24. Palacio, S.M., R.F. Espinoza-Quiñones, R.M. Galante, D.C. Zenatti, A.A. Seolatto, E.K. Lorenz, C.E. Zacarkim, N. Rossi, M.A. Rizzutto, and M.H. Tabacniks. 2005. Correlation between heavy metal ions (copper, zinc, lead) concentrations and root length of Allium cepa L. in polluted river water. Braz. Arch. Biol. Technol. 48, 191-196. Doi: https://doi.org/10.1590/S1516-89132005000400024
  25. Rafie, M.R., A.H. Khoshgoftarmanesh, H. Shariatmadari, A. Darabi, and N. Dalir. 2017. Influence of foliar-applied zinc in the form of mineral and complexed with amino acids on yield and nutritional quality of onion under field conditions. Sci. Hortic. 216, 160-168. Doi: https://doi.org/10.1016/j.scienta.2017.01.014
  26. Repkina, N., I. Nilova, and N. Kaznina. 2023. Effect of zinc excess in substrate on physiological responses of Sinapis alba L. Plants 12(1), 211. Doi: https://doi.org/10.3390/plants12010211
  27. Singh, N., V.K. Gupta, A. Kumar, and B. Sharma. 2017. Synergistic effects of heavy metals and pesticides in living systems. Front. Chem. 5, 70. Doi: https://doi.org/10.3389/fchem.2017.00070
  28. Shovon, T.A., D.M.A. Rozendaal, D. Gagnon, F. Gendron, M. Vetter, and M.C. Vanderwel. 2020. Plant communities on nitrogen-rich soil are less sensitive to soil moisture than plant communities on nitrogen-poor soil. J. Ecol. 108(1), 133-144. Doi: https://doi.org/10.1111/1365-2745.13251
  29. Subba, P., M. Mukhopadhyay, S.K. Mahato, K.D. Bhutia, T.K. Mondal, and S.K. Ghosh. 2014. Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings. Physiol. Mol. Biol. Plants 20(4), 461-473. Doi: https://doi.org/10.1007/s12298-014-0254-2
  30. Sun, Z., T. Xiong, T. Zhang, N. Wang, D. Chen, and S. Li. 2019. Influences of zinc oxide nanoparticles on Allium cepa root cells and the primary cause of phytotoxicity. Ecotoxicology 28(2), 175-188. Doi: https://doi.org/10.1007/s10646-018-2010-9
  31. Terán-Chaves, C.A., L. Montejo-Nuñez, C. Cordero-Cordero, and S.M. Polo-Murcia. 2023. Water productivity indices of onion (Allium cepa) under drip irrigation and mulching in a semi-arid tropical region of Colombia. Horticulturae 9(6), 632. Doi: https://doi.org/10.3390/horticulturae9060632
  32. Zaheer, I.E., S. Ali, M.H. Saleem, M.A. Ashraf, Q. Ali, Z. Abbas, M. Rizwan, M.A. El-Sheikh, M.N. Alyemeni, and L. Wijaya. 2020. Zinc-lysine supplementation mitigates oxidative stress in rapeseed (Brassica napus L.) by preventing phytotoxicity of chromium, when irrigated with tannery wastewater. Plants 9(9), 1145. Doi: https://doi.org/10.3390/plants9091145
  33. Zhou, H., G. Zhou, Q. He, L. Zhou, Y. Ji, and M. Zhou. 2020. Environmental explanation of maize specific leaf area under varying water stress regimes. Environ. Exp. Bot. 171, 103932. Doi: https://doi.org/10.1016/j.envexpbot.2019.103932

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.