Characterization of soil moisture dynamics in Colombian agricultural areas
Abstract
Seasonal dynamics in edaphic humidity are influenced by different environmental factors, such as topography, physical and chemical soil conditions, type of vegetation cover and climatic classification. Data from 105 agrometeorological stations in the IDEAM network, distributed throughout Colombia, with records from January, 2001 to April, 2020, were studied. A non-parametric Spearman rank correlation test was used to evaluate the relationship between soil moisture and atmospheric variables. Simultaneously, the behaviors of seasonal dynamics were analyzed, along with their interaction with atmospheric, physical soil and vegetation cover variables. The results showed that soil moisture is more significantly influenced by frequency than by intensity of precipitation; this variable had a seasonal behavior, similar to that of precipitation. The physical variable texture was closely related to the behavior of the soil surface moisture (<10 cm deep). In addition, there was evidence of a surface moisture response to the physical conditions of the soil, topography and availability of plant cover. As the soil depth increased, the soil moisture had less variation because the influence of the atmospheric conditions was greater on the surface and persisted longer over time.
Keywords
Agrometeorology, Nonparametric statistics, Soil physics, Data management
References
- Assouline, S. and M. Ben-Hur. 2006. Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. Catena 66(3), 211-220.
- Doi: 10.1016/j.catena.2006.02.005
- Beljaars, A., P. Viterbo, M. Miller, and A. Betts. 1996. The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Weather Rev. 124(3), 362-383.
- Doi: 10.1175/1520-0493(1996)124<0362:TAROTU>2.0.CO;2
- Browning, J. and C. Schneider. 2017. R-package ’SNHT’ Standard Normal Homogeneity test v. 1.0.5. Package. In: https://cran.r-project.org/web//packages/snht/snht.pdf; consulted: May, 2020.
- Cao, W., Y. Sheng, J.-C. Wu, and J. Li. 2017. Spatial variability and its main controlling factors of the permafrost soil-moisture on the northern-slope of Bayan Har Mountains in Qinghai-Tibet Plateau. J. Mt. Sci. 14, 2406-2419. Doi: 10.1007/s11629-017-4467-z
- Chen, X., Z. Zhang, X. Chen, and P. Shi. 2009. The impact of land use and land cover changes on soil moisture and hydraulic conductivity along the karst hillslopes of southwest China. Environ. Earth Sci. 59, 811-820. Doi: 10.1007/s12665-009-0077-6
- Cleves L., J.A. J.A. Toro C., and L.F. Martínez B. 2016. Los balances hídricos agrícolas en modelos de simulación agroclimáticos. Una revisión analítica. Rev. Colombiana de Ciencias Hortícolas 11(1), 149-163. Doi: 10.17584/rcch.2016v10i1.4460
- Farsi, N. and N. Mahjouri. 2019. Evaluating the contribution of the climate change and human activities to runoff change under uncertainty. J. Hydrol. 574, 872-891. Doi: 10.1016/j.jhydrol.2019.04.028
- Fu, B., J. Wang, L. Chen, and Y. Qiu. 2003. The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China. Catena 54(1-2), 197-213. Doi: 10.1016/S0341-8162(03)00065-1
- Gaur, N. and B. Mohanty. 2013. Evolution of physical controls for soil moisture in humid and subhumid watersheds. Water Resour. Res. 49(3), 1244-1258. Doi: 10.1002/wrcr.20069
- Haimberger, L. 2007. Homogenization of radiosonde temperature time series using innovation statistics. J. Climate 20(7), 1377-1403. Doi: 10.1175/JCLI4050.1
- Hong, M., S.-H. Lee, S.-J. Lee, and J.-Y. Choi. 2021. Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit. Agric. Water Manage. 243, 106494. Doi: 10.1016/j.agwat.2020.106494
- Hoyos, I. and B.A. Rodríguez. 2020. Drawing the complexity of Colombian climate from non-extensive extreme behavior. Physica A 548, 123673. Doi: 10.1016/j.physa.2019.123673
- Huang, J., P. Wu, and X. Zhao. 2013. Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena 104, 93-102. Doi: 10.1016/j.catena.2012.10.013
- IDEAM, Instituto de Hidrología, Meteorología y Estudios Ambientales of Colombia. 2015. Mapa nacional de cobertura de la tierra (periodo 2010-2012): Metodología Corine Land Cover adaptada para Colombia escala 1:100.000 v 1.0. SINCHI; PNN; IGAC, Bogota.
- IGAC, Instituto Geográfico Agustín Codazzi. 2014. Estudio general de suelos y zonificación de tierras. Bogota.
- Jaramillo, A. and B. Chaves. 2000. Distribución de la precipitación en Colombia analizada mediante conglomeración estadística. Cenicafé 51(2), 102-113.
- Jia, Y.-H. and M.-A. Shao. 2013. Temporal stability of soil water storage under four types of revegetation on the northern Loess Plateau of China. Agric. Water Manag. 117, 33-42. Doi: 10.1016/j.agwat.2012.10.013
- Joshi, C. and B. Mohanty. 2010. Physical controls of near-surface soil moisture across varying spatial scales in an agricultural landscape during SMEX02. Water Resour. Res. 46(12), W12503. Doi: 10.1029/2010WR009152
- Letian, Z., Y. Liu, and F. Jiao. 2012. Time series analysis of spatial variability of soil moisture in Loess Hilly Region. Procedia Earth Planet. Sci. 5, 346-353. Doi: 10.1016/j.proeps.2012.01.058
- Liu, M., Q. Wang, L. Guo, J. Yi, H. Lin, Q. Zhu, B. Fan, and H. Zhang. 2020. Influence of canopy and topographic position on soil moisture response to rainfall in a hilly catchment of Three Gorges reservoir Area, China. J. Geogr. Sci. 30, 949-968. Doi: 10.1007/s11442-020-1764-1
- Martínez-Fernández, J., Á. González-Zamora, and L. Almendra-Martín. 2021. Soil moisture memory and soil properties: An analysis with the stored precipitation fraction. J. Hydrol. 593, 125622. Doi: 10.1016/j.jhydrol.2020.125622
- Mu, W., F. Yu, C. Li, Y. Xie, J. Tian, J. Liu, and N. Zhao. 2015. Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize. Water 7(6), 2990-3008. Doi: 10.3390/w7062990
- Pan, Y.-X., X.-P. Wang, R.-L. Jia, Y.-W. Chen, and M.-Z. He. 2008. Spatial variability of surface soil moisture content in a re-vegetated desert area in shapotou, Northern China. J. Arid Environ. 72, 1675-1683. Doi: 10.1016/j.jaridenv.2008.03.010
- Radha, V., D. Ryu, B.A. George, Y. Ryu, and K.D. Dassanayake. 2017. Seasonal and inter-annual variability of soil moisture stress function in dryland wheat field, Australia. Agric. For. Meteorol. 232, 489-499. Doi: 10.1016/j.agrformet.2016.10.007
- Saladié, O., M. Brunet, E. Aguilar, J. Sigró, and D. López. 2004. Variaciones y tendencia secular de la precipitación en el Sistema Mediterráneo Catalán (1901-2000). pp. 399-408. In: García Codron, J.C., C. Diego Liaño, P. Fdez. de Arróyabe Hernáez, C. Garmendia Pedraja, and D. Rasilla Álvarez (Eds.). El Clima entre el mar y la montaña. Serie A, N 4. Asociación Española de Climatología, Universidad de Cantabria, Santander, Spain.
- Spearman, C. 1904. The proof and measurement of association between two things. Am. J. Psychol. 15(1), 72-101. Doi: 10.2307/1412159
- UPRA, Unidad de Planificación Rural Agropecuaria. 2017. Identificación general de la frontera agrícola en Colombia. Technical Report. Ministerio de Agricultura y Desarrollo Rural, Bogota.
- Vazifehkhah, S. and E. Kahya. 2019. Hydrological and agricultural droughts assessment in a semi-arid basin: Inspecting the teleconnections of climate indices on a catchment scale. Agric. Water Manage. 217, 413-425. Doi: 10.1016/j.agwat.2019.02.034
- Wyatt, B.M., T.E. Ochsner, and C.B. Zou. 2021. Estimating root zone soil moisture across diverse land cover types by integrating in-situ and remotely sensed data. Agric. For.Meteorol. 307, 108471. Doi: 10.1016/j.agrformet.2021.108471
- Yang, K. and C. Wang. 2019. Seasonal persistence of soil moisture anomalies related to freeze-thaw over the Tibetan Plateau and prediction signal of summer precipitation in eastern China. Clim. Dyn. 53, 2411-2424. Doi: 10.1007/s00382-019-04867-1
- Yetbarek, E. and R. Ojha, Richa. 2020. Spatio-temporal variability of soil moisture in a cropped agricultural plot within the Ganga Basin, India. Agric. Water Manage. 234, 106108. Doi: 10.1016/j.agwat.2020.106108
- Zhang, C., S. Liu, X. Zhang, and K. Tan. 2009. Research on the spatial variability of soil moisture. pp. 285-292. In: Li, D. and C. Zhao (eds.). Computer and Computing Technologies in Agriculture II. Vol. 1. In: Proc. CCTA 2008 International Conference on Computer and Computing Technologies in Agriculture. Springer, Boston, MA. Doi: 10.1007/978-1-4419-0209-2_30
- Zhang, X., X. Zhang, and G. Li. 2014. The effect of texture and irrigation on the soil moisture vertical-temporal variability in an urban artificial landscape: A case study of Olympic Forest Park in Beijing. Front. Environ. Sci. Eng. 9, 269-278. Doi: 10.1007/s11783-014-0672-y
- Zhao, Z., Y. Shen, Q. Wang, and R. Jiang. 2020. The temporal stability of soil moisture spatial pattern and its influencing factors in rocky environments. Catena 187, 104418. Doi: 10.1016/j.catena.2019.104418
- Zhu, H., S. Hu, J. Yang, F. Karamage, H. Li, and S. Fu. 2019. Spatio-temporal variation of soil moisture in a fixed dune at the southern edge of the Gurbantunggut Desert in Xinjiang, China. J. Arid Land 11, 685-700. Doi: 10.1007/s40333-019-0104-8