Skip to main navigation menu Skip to main content Skip to site footer

Biological control of Monilinia fructicola (G. Winter) Honey using two isolates of Bacillus subtilis on peaches

Peach fruits affected by Monilia fructicola. Photo: M.J. Patiño-Pacheco

Abstract

Brown rot of the peach tree caused by Monilinia fructicola affects the genus Prunus in the field, and especially at postharvest, causing losses of up to 60% of the harvested fruits. Brown rot management is currently done using the application of chemical fungicides that generate phytotoxicity in the fruits and contamination in the environment. This increases production costs, demanding the identification of different strategies for disease management. This research aimed to evaluate the biocontrol effects of two isolates of Bacillus subtilis (CB10 and CB11) against M. fructicola using in vitro tests and inoculated fruit versus a chemical control with the dicloran fungicide as a positive control. The inhibition of phytopathogenic growth as well as the severity and rate of inhibition of the M. fucticola were evaluated in dual media. The isolate CB10 in the dual cultures achieved an inhibition rate (biocontrol) of 88.5%, much higher than the other evaluated treatments. In the inoculated fruit this isolate CB10 achieved a rate of inhibition of the pathogen of 95%, higher than other treatments, including the dicloran fungicide. The research allowed us to affirm that B. subtilis CB10 could be used in the biocontrol of M. fructicola for peaches in the management of brown rot disease.

Keywords

Biocontrol, Antifungal effect, Antagonistic bacteria, Brown rot, Stone fruits

PDF

References

  1. Abbey, J., D. Percival, S.K. Asiedu, and A. Schilder. 2018. Susceptibility to Botrytis blight at different floral stages of wild blueberry phenotypes. p. 19. In: North NABREW American Blueberry Researchers and Extension Workers Conference. University of Maine, Orono, ME. https://digitalcommons.library.umaine.edu/nabrew2018/proceedingpapers/proceedingpapers/19/
  2. Agrios, G.N. 2005. Plant pathology. 5th ed. Elsevier Academic Press, Amsterdam. Doi: https://doi.org/10.1016/C2009-0-02037-6
  3. Agronet. 2023. Área, producción y rendimiento nacional por cultivo: durazno. In: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1; consulted: February, 2024.
  4. Botero Ospina, M.J., J. Castaño Zapata, A. Saldarriaga Cardona, and A.M. Castro Toro. 2013. Manual práctico de bacteriología vegetal. Universidad de Caldas, Manizales, Colombia.
  5. Castro, A. and G.A. Puentes. 2012. Ciruelo (Prunus salicina Lindl.) y duraznero (Prunus persica (L.) Batsch.). pp. 370-391. In: G. Fischer (Ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  6. Cesa-Luna, C., A. Baéz, V. Quintero-Hernández, J. De la Cruz-Enríquez, M.D. Castañeda-Antonio, and J. Muñóz-Rojas. 2020. The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens. Acta Biol. Colomb. 25(1), 140-154. Doi: https://doi.org/10.15446/abc.v25n1.76867
  7. Chen, F., S.E. Everhart, P.K. Bryson, C. Luo, X. Song, X. Liu, and G. Schnabel. 2015. Fungicide-induced transposon movement in Monilinia fructicola. Fungal Genet. Biol. 85, 38-44. Doi: https://doi.org/10.1016/j.fgb.2015.10.006
  8. Elshakh, A.S.A., S.I. Anjum, W. Qiu, A.A. Almoneafy, W. Li, Z. Yang, Z.-Q. Cui, B. Li, G.-C. Sun, and G.-L. Xie. 2016. Controlling and defence-related mechanisms of Bacillus Strains against bacterial leaf blight of rice. J. Phytopathol. 164, 534-546. https://doi.org/10.1111/jph.12479
  9. EPPO. 2022. EPPO A2 List of pests recommended for regulation as quarantine pests, version 2023-09. In: https://www.eppo.int/ACTIVITIES/plant_quarantine/A2_list; consulted: February, 2024.
  10. Etesami, H., B.R. Jeong, and B.R. Glick. 2023. Biocontrol of plant diseases by Bacillus spp. Physiol. Mol. Plant Pathol. 126, 102048. Doi: https://doi.org/10.1016/j.pmpp.2023.102048
  11. FRAC. 2023. FRAC Code List 2023: Fungal control agents sorted by cross-resistance pattern and mode of action. In: https://www.frac.info/home; consulted: February, 2024.
  12. Gil, M.I., F.A. Tomás-Barberán, B. Hess-Pierce, and A.A. Kader. 2002. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J. Agric. Food Chem. 50(17), 4976-4982. Doi: https://doi.org/10.1021/jf020136b
  13. Gotor-Vila, A., N. Teixidó, A. Di Francesco, J. Usuall, L. Ugolini, R. Torres, and M. Mari. 2017. Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry. Food Microbiol. 64, 219-225. Doi: https://doi.org/10.1016/j.fm.2017.01.006
  14. Guarín Torres, Y.C., M.J. Patiño Pacheco, and J.W. Martínez. 2019. Identificación del agente causal de la pudrición parda en frutos de duraznero (Prunus persica, L. Batsch) en Boyacá. Entramado 15(1), 298-309. Doi: https://doi.org/10.18041/1900-3803/entramado.1.5418
  15. Hu, M.-J., K.D. Cox, G. Schnabel, and C.-X. Luo. 2011. Monilinia species causing brown rot of peach in China. PLoS One 6(9), e24990. Doi: https://doi.org/10.1371/journal.pone.0024990
  16. Kant, R., R.S. Shukla, and A. Shukla. 2018. A review on peach (Prunus persica): an asset of medicinal phytochemicals. Int. J. Res. Appl. Sci. Eng. Technol. 6(1), 2186-2200. Doi: http://doi.org/10.22214/ijraset.2018.1342
  17. Li, Q., L. Wu, J. Hao, L. Luo, Y. Cao, and J. Li. 2015. Biofumigation on post-harvest diseases of fruits using a new volatile-producing fungus of Ceratocystis fimbriata. Plos One 10(7), e0132009. Doi: https://doi.org/10.1371/journal.pone.0132009
  18. Lima, G., R. Castoria, F. De Curtis, A. Raiola, A. Ritieni, and V. De Cicco. 2011. Integrated control of blue mould using new fungicides and biocontrol yeasts lowers levels of fungicide residues and patulin contamination in apples. Postharvest Biol. Technol. 60(2), 164-172. Doi: https://doi.org/10.1016/j.postharvbio.2010.12.010
  19. Luo, C.-X. 2017. Advances and prospects on researches of brown rot disease on fruits. Acta Phytopathol. Sin. 47(2), 145-153.
  20. MacFaddin. 2003. Pruebas bioquímicas para la identificación de bacterias de importancia clínica. 3th ed. Médica Panamericana, Buenos Aires.
  21. Michailides, T.J., Y. Luo, Z. Ma, and D.P. Morgan. 2007. Brown rot of dried plum in California, new insights on an old disease. APSnet Features. Doi: https://doi.org/10.1094/APSnetFeature-2007-0307
  22. Miranda, D. and C. Carranza. 2013 Caracterización, clasificación y tipificación de sistemas productivos de caducifolios, con énfasis en duraznero, manzano, ciruelo y peral. pp. 87-105. In: Miranda, D., G. Fischer, and C. Carranza (eds.). Los frutales caducifolios en Colombia: situación actual, sistema de cultivo y planes de desarrollo. Sociedad Colombiana de Ciencias Hortícolas, Bogota.
  23. Mosquera, S., L.M. González-Jaramillo, S. Orduz, and V. Villegas-Escobar. 2014. Multiple response optimization of Bacillus subtilis EA-CB0015 culture and identification of antifungal metabolites. Biocatal. Agric. Biotechnol. 3(4), 378-385. Doi: https://doi.org/10.1016/j.bcab.2014.09.004
  24. Ongena, M., P. Jacques, Y. Touré, J. Destain, A. Jabrane, and P. Thonart. 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potencial of Bacillus subtilis. Appl. Microbiol. Biotechnol. 69, 29-38. Doi: https://doi.org/10.1007/s00253-005-1940-3
  25. Palmieri, D., G. Ianiri, T. Conte, R. Castoria, G. Lima, and F. De Curtis. 2022. Influence of biocontrol and integrated strategies and treatment timing on plum brown rot incidence and fungicide residues in fruits. Agriculture 12(10), 1656. Doi: https://doi.org/10.3390/agriculture12101656
  26. Passari, A.K., P.C. Lalsiamthari, Zothanpuia, V.V. Leo, V.K. Mishra, M.K. Yadav, V.K. Gupta, and B.P. Singh 2018. Biocontrol of Fusarium wilt of Capsicum annuum by rhizospheric bacteria isolated from turmeric endowed with plant growth promotion and disease suppression potential. Eur. J. Plant Pathol. 150, 831-846. Doi: https://doi.org/10.1007/s10658-017-1325-3
  27. Patiño, H.L., R.E. Bustamante, and L. Vásquez D. 2012. Manejo biológico en la filósfera: modelo Mycosphaerella fijiensis Morelet en banano (Musa AAA). pp. 179-187. In: Hoyos Carvajal, L.M. (Ed.). Enfermedades de plantas: control biológico. ECOE Ediciones, Bogota.
  28. Pinzón, E.H., A.C. Morillo, and G. Fischer. 2014. Aspectos fisiológicos del duraznero (Prunus persica [L] Batch), en el trópico alto. Una revisión. Rev. U.D.C.A Actual. Divul. Cient. 17(2), 401-411. Doi: https://doi.org/10.31910/rudca.v17.n2.2014.243
  29. OEC, Observatory of Economic Complexity. 2024. Peaches & nectarines (fresh) in Colombia. In: https://oec.world/es/profile/bilateral-product/peaches-nectarines-fresh/reporter/col; consulted: March, 2024.
  30. Reyna, M., E.P. Macor, A.C. Vilchez, and A.L. Villasuso. 2023. Response in barley roots during interaction with Bacillus subtilis and Fusarium graminearum. Biol. Control 179, 105128. Doi: https://doi.org/10.1016/j.biocontrol.2022.105128
  31. Rudrappa, T., K.J. Czymme, P.W. Paré, and H.P. Bais. 2008. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 148(3), 1547-1556. Doi: https://doi.org/10.1104/pp.108.127613
  32. Santos, C.M., C.M.P. Abreu, J.M. Freire, and A.D. Corrêa. 2013. Atividade antioxidante de frutos de quatro cultivares de pessegueiro. Rev. Bras. Frutic. 35(2), 339-344. Doi: https://doi.org/10.1590/S0100-29452013000200002
  33. Shivaji, S., K. Suresh, P. Chaturvedi, S. Dube, and S. Sengupta. 2005. Bacillus arsenicus sp. nov., an arsenic-resistant bacterium isolated from a siderite concretion in West Bengal, India. Int. J. Syst. Evol. Microbiol. 55(3), 1123-1127. Doi: https://doi.org/10.1099/ijs.0.63476-0
  34. Wang, H., Y. Shi, D. Wang, Z. Yao, Y. Wang, J. Liu, W. Zhang, and A. Wang. 2018a. A biocontrol strain of Bacillus subtilis WXCDD105 used to control tomato Botrytis cinerea and Cladosporium fulvum cooke and promote the grown of seedlings. Int. J. Mol. Sci. 19(5), 1371. Doi: https://doi.org/10.3390/ijms19051371
  35. Wang, X.Q., D.L. Zhao, L.L. Shen, C.L. Jing, and C.S. Zhang. 2018b. Application and mechanisms of Bacilllus subtilis in biological control of plant disease. pp. 225-250. In: Meena, V. (ed.). Role of rhizospheric microbes of soil. Springer, Singapore. Doi: https://doi.org/10.1007/978-981-10-8402-7_9
  36. WFO. 2024. Prunus L. In: http://www.worldfloraonline.org/taxon/wfo-4000031284; consulted: April, 2024.
  37. Wilson, C.L. and M.E. Wisniewski. 1989. Biological control of postharvest diseases of fruits and vegetables: An emerging technology. Annu. Rev. Phytopathol. 27, 425-441.
  38. Wong, M.J.Q., X. Liang, M. Smart, L. Tang, R. Moore, B. Ingalls, and T.C. Dong. 2016. Microbial herd protection mediated by antagonistic interaction in polymicrobial communities. Appl. Environ. Microbiol. 82(23), 6881-6888. Doi: https://doi.org/10.1128/AEM.02210-16
  39. Yánez-Mendizábal, V., H. Zeriouh, I. Viñas, R. Torres, J. Usall, A. de Vicente, A. Pérez-García, and N. Teixidó. 2012. Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur. J. Plant Pathol. 132(4), 609-619. Doi: https://doi.org/10.1007/s10658-011-9905-0
  40. Yin, L.-F., S.-Q. Zhang, J. Du, X.-Y Wang, W.-X. Xu, and C.-X. Luo. 2021. Monilinia fructicola on loquat: An old pathogen invading a new host. J. Integrative Agric. 20, 2009-2014.
  41. You, C., C. Zhang, F. Kong, C. Feng, and J. Wang. 2016. Comparison of the effect of biocontrol agents Bacillus subtilis and fungicide metalaxyl-mancozeb on bacterial communities in tobacco rhizospheric soil. Ecol. Eng. 91, 119-125. Doi: https://doi.org/10.1016/j.ecoleng.2016.02.011
  42. Yuan, X., X. Hou, H. Chang, R. Yang, F. Wang, and Y. Liu. 2019. Bacillus methylotrophicus has potential applications against Monilinia fructicola. Open Life Sci. 14(1), 410-419. Doi: https://doi.org/10.1515/biol-2019-0046
  43. Zapata, C.J. 2002. Principios básicos de fitoepidemiologia. Universidad de Caldas, Manizales, Colombia.
  44. Zhen, C.-Y., W.-D. Li, S.-Y. Wu, P.-Y. Zhao, Z. Qin, and H.-Y. Gao. 2022. Effects of Bacillus subtilis CF-3 volatile organic compounds on the transcriptome and proteome of Monilinia fructicola reveal a potential mechanism of action. Biol. Control 168, 104872. Doi: https://doi.org/10.1016/j.biocontrol.2022.104872
  45. Zhou, M., P. Li, S. Wu, P. Zhao, and H. Gao. 2019. Bacillus subtilis CF-3 volatile organic compounds inhibit Monilinia fructicola growth in peach fruit. Front. Microbiol. 10, 1804. Doi: https://doi.org/10.3389/fmicb.2019.01804

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.