Aplicación de técnicas moleculares en microbiología del suelo para la identificación de bacterias con potencial agrícola: una revisión y análisis bibliométrico
Resumen
El uso excesivo de agroquímicos y las malas prácticas agrícolas han aumentado los efectos negativos sobre el suelo y la diversidad biológica de los cultivos. En ese sentido, existe la necesidad de identificar bacterias potenciales por medio de técnicas moleculares para la producción agrícola sostenible. El objetivo de este artículo fue desarrollar un mapeo sistemático y bibliométrico acerca de las investigaciones realizadas en las que se aplican las técnicas moleculares en microbiología de suelos, para la identificación de bacterias con potencial agrícola. Se empleó la búsqueda de investigaciones relacionadas con las técnicas moleculares usadas para la identificación de bacterias con potencial agrícola en las bases de datos Web of Science y Scopus; los cuales fueron clasificados y analizados por medio del software R studio. A partir de las investigaciones obtenidas se analizó el origen, referente teórico, estudio bibliométrico y redes sobre la temática propuesta. Se reportaron un total de 527 investigaciones relacionadas con las técnicas moleculares empleadas para la identificación de bacterias con potencial agrícola, aumentado en los últimos cinco años en un 52,75%, con una tasa de crecimiento anual del 17,4%, destacándose India como el país con mayor número de publicaciones, aportando un 25% de investigaciones a nivel mundial. La secuenciación y la PCR son las técnicas más usuales para identificar a los microorganismos potenciales, siendo Bacillus, Pseudomonas, Enterobacter y Acinetobacter los géneros bacterianos más frecuentes en ser identificados debido a los mecanismos que utilizan para favorecer los sistemas de producción agrícola sostenible.
Palabras clave
Caracterización, PCR, Rizobacterias, Agricultura sostenible
Citas
- Acevedo, J., S. Robledo, and M.Z. Sepúlveda. 2021. Subáreas de internacionalización de emprendimientos: una revisión bibliográfica. Econ. CUC 42(1), 249-268. Doi: https://doi.org/10.17981/econcuc.42.1.2021.Org.7
- Aeron, A., R.C. Dubey, and D.K. Maheshwari. 2020. Characterization of a plant-growth-promoting non-nodulating endophytic bacterium (Stenotrophomonas maltophilia) from the root nodules of Mucuna utilis var. capitata L. (Safed Kaunch). Can. J. Microbiol. 66(11), 670-677. Doi: https://doi.org/10.1139/cjm-2020-0196
- Aldayel, M.F. and A. Khalifa. 2021. Isolation and characterization of bacteria from tomato and assessment of its plant growth-promoting traits in three economically important crops in Al-Ahsa region, Saudi Arabia. J. Environ. Biol. 42, 973-981. Doi: https://doi.org/10.22438/jeb/42/4/MRN-1758
- Aldonate, M.L., P. Jiménez, and E.L. Ulla. 2019. Caracterización de rizobacterias nativas y su efecto en la promoción de crecimiento de garbanzo (Cicer arietinum L.) en condiciones controladas. Rev. Agron. Noroeste Arg. 39(2), 89-98.
- Alkorta, I., A. Aizpurua, P. Riga, I. Albizu, I. Amézaga, and C. Garbisu. 2003. Soil enzyme activities as biological indicators of soil health. Rev. Environ. Health 18(1), 65-73. Doi: https://doi.org/10.1515/reveh.2003.18.1.65
- Alonso, S., F.J. Cabrerizo, E. Herrera-Viedma, and F. Herrera. 2009. h-Index: a review focused in its variants, computation and standardization for different scientific fields. J. Informetr. 3(4), 273-289. Doi: https://doi.org/10.1016/j.joi.2009.04.001
- Aloo, B.N., E.R. Mbega, B.A. Makumba, R. Hertel, and R. Daniel. 2020. Molecular identification and in vitro plant growth-promoting activities of culturable potato (Solanum tuberosum L.) rhizobacteria in Tanzania. Potato Res. 64(1), 67-95. Doi: https://doi.org/10.1007/s11540-020-09465-x
- Alotaibi, F., M. St-Arnaud, and M. Hijri. 2022. In-depth characterization of plant growth promotion potentials of selected alkanes-degrading plant growth-promoting bacterial isolates. Front. Microbiol. 13, 863702. Doi: https://doi.org/10.3389/fmicb.2022.863702
- Andleeb, S., I. Shafique, A. Naseer, W.A. Abbasi, S. Ejaz, I. Liaqat, S. Ali, M.F. Khan, F. Ahmed, and N.M. Ali. 2022. Molecular characterization of plant growth-promoting vermi-bacteria associated with Eisenia fetida gastrointestinal tract. PloS One 17(6), e0269946. Doi: https://doi.org/10.1371/journal.pone.0269946
- Aria, M. and C. Cuccurullo. 2017. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 11(4), 959-975. Doi: https://doi.org/10.1016/j.joi.2017.08.007
- Bar-Ilan, J. 2010. Citations to the “Introduction to informetrics” indexed by WOS, Scopus and Google Scholar. Scientometrics 82(3), 495-506. Doi: https://doi.org/10.1007/s11192-010-0185-9
- Barrera, N.A., S. Robledo, and M.Z. Sepulveda. 2022. Una revisión bibliográfica del Fintech y sus principales subáreas de estudio. Econ. CUC 43(1), 83-100. Doi: https://doi.org/10.17981/econcuc.43.1.2022.Econ.4
- Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Proc. Int. AAAI Conf. Web Soc. Media 3(1), 361-362. Doi: https://doi.org/10.1609/icwsm.v3i1.13937
- Bécquer, C.J. 2022. Rhizobacteria and their contribution to plant tolerance to drought and salinity. Cuban J. Agric. Sci. 56(2), 1-19. https://www.redalyc.org/articulo.oa?id=653773103006
- Bennis, M., V. Perez-Tapia, S. Alami, O. Bouhnik, H. Lamin, H. Abdelmoumen, E.J. Bedmar, and M.M. El Idrissi. 2022. Characterization of plant growth-promoting bacteria isolated from the rhizosphere of Robinia pseudoacacia growing in metal-contaminated mine tailings in eastern Morocco. J. Environ. Manag. 304, 114321. Doi: https://doi.org/10.1016/j.jenvman.2021.114321
- Bhutani, N., R. Maheshwari, N. Sharma, P. Kumar, A.S. Dang, and P. Suneja. 2022. Characterization of halo-tolerant plant growth promoting endophytic Bacillus licheniformis MHN 12. J. Genet. Eng. Biotechnol. 20(1), 113. Doi: https://doi.org/10.1186/s43141-022-00407-3
- Blondel, V.D., J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. J. Stat. Mechan.: Theory Exp. 2008(10), P10008. Doi: https://doi.org/10.1088/1742-5468/2008/10/P10008
- Buitrago, S., P.L. Duque, and S. Robledo. 2020. Branding corporativo: una revisión bibliográfica. Econ. CUC 41(1), 143-162. Doi: https://doi.org/10.17981/econcuc.41.1.2020.Org.1
- Cascón-Katchadourian, J., J.A. Moral-Munoz, H. Liao, and M.J. Cobo. 2020. Análisis bibliométrico de la Revista Española de Documentación Científica desde su inclusión en la Web of Science (2008-2018). Rev. Esp. Doc. Cient. 43(3), e267. Doi: https://doi.org/10.3989/redc.2020.3.1690
- Cavael, U., P. Tost, K. Diehl, F. Büks, and P. Lentzsch. 2020. Correlations of soil fungi, soil structure and tree vigour on an apple orchard with replant soil. Soil Syst. 4(4), 70. Doi: https://doi.org/10.3390/soilsystems4040070
- Chakdar, H., S.G. Dastager, J.M. Khire, D. Rane, and M.S. Dharne. 2018. Characterization of mineral phosphate solubilizing and plant growth promoting bacteria from termite soil of arid region. 3 Biotech 8(11), 463. Doi: https://doi.org/10.1007/s13205-018-1488-4
- Clavijo-Tapia, F.J., P.L. Duque-Hurtado, G. Arias-Cerquera, and M.A. Tolosa-Castañeda. 2021. Organizational communication: a bibliometric analysis from 2005 to 2020. Clio Amer. 15(29), 621-640. Doi: https://doi.org/10.21676/23897848.4311
- Cruz, C.I., L.X. Zelaya, G. Sandoval, S. de los Santos, E. Rojas, I.F. Chávez, and S. Ruiz. 2021. Utilización de microorganismos para una agricultura sostenible en México: consideraciones y retos. Rev. Mex. Cienc. Agric. 12(5), 899-913. Doi: https://doi.org/10.29312/remexca.v12i5.2905
- Di Vaio, A., R. Palladino, A. Pezzi, and D.E. Kalisz. 2021. The role of digital innovation in knowledge management systems: a systematic literature review. J. Bus. Res. 123, 220-231. Doi: https://doi.org/10.1016/j.jbusres.2020.09.042
- Diaz, C.E., D. Daza, and C.I. Arámbula. 2019. Biofertilizing potential of a fertilizer based on cienego and native microorganisms in corn seeds. J. Phys.: Conf. Ser. 1386(1), 012058. Doi: https://doi.org/10.1088/1742-6596/1386/1/012058
- Díaz-Rodríguez, A.M., L.A. Salcedo, C.M. Félix, F.I. Parra-Cota, G. Santoyo, M.L. Puente, D. Bhattacharya, J. Mukherjee, and S. de los Santos-Villalobos. 2021. The current and future role of microbial culture collections in food security worldwide. Front. Sustain. Food Syst. 4, 614739. Doi: https://doi.org/10.3389/fsufs.2020.614739
- Djebaili, R., M. Pellegrini, M. Rossi, C. Forni, M. Smati, M. Del Gallo, and M. Kitouni. 2021. Characterization of plant growth-promoting traits and inoculation effects on Triticum durum of actinomycetes isolates under salt stress conditions. Soil Syst. 5(2), 26. Doi: https://doi.org/10.3390/soilsystems5020026
- dos Santos, S.R.L., R.M. Costa, R.O. Aviz, V.M.M. Melo, A.C.A. Lopes, A.P.A. Pereira, L.W. Mendes, R.S. Barbosa, and A.S.F. Araujo. 2022. Differential plant growth-promoting rhizobacteria species selection by maize, cowpea, and lima bean. Rhizosphere 24, 100626. Doi: https://doi.org/10.1016/j.rhisph.2022.100626
- Duque-Hurtado, P., V. Samboni-Rodriguez, M. Castro-Garcia, L.A. Montoya-Restrepo, and I.A. Montoya-Restrepo. 2020. Neuromarketing: Its current status and research perspectives. Estud. Gerenc. 36(157), 525-539. Doi: https://doi.org/10.18046/j.estger.2020.157.3890
- Duque, P. and L.S.C. Cervantes-Cervantes. 2019. Responsabilidad social universitaria: una revisión sistemática y análisis bibliométrico. Estud. Gerenc. 35(153), 451-464. Doi: https://doi.org/10.18046/j.estger.2019.153.3389
- Duque, P., O.E. Meza, D. Giraldo, and K. Barreto. 2021a. Economía social y economía solidaria: un análisis bibliométrico y revisión de literatura. Revesco: Rev. Estud. Coop. 138, e75566. Doi: https://doi.org/10.5209/reve.75566
- Duque, P.L., O.E. Meza, G.A. Zapata, and J.D. Giraldo. 2021b. Internacionalización de empresas latinas: evolución y tendencias. Econ. CUC 42(1), 122-152. Doi: https://doi.org/10.17981/econcuc.42.1.2021.Org.1
- Duque, P., D. Trejos, O. Hoyos, and J.C. Chica. 2021c. Finanzas corporativas y sostenibilidad: un análisis bibliométrico e identificación de tendencias. Semest. Econ. 24(56), 25-51. Doi: https://doi.org/10.22395/seec.v24n56a1
- Echchakoui, S. 2020. Why and how to merge Scopus and Web of Science during bibliometric analysis: the case of sales force literature from 1912 to 2019. J. Mark. Anal. 8(3), 165-184. Doi: https://doi.org/10.1057/s41270-020-00081-9
- Fan, K., M. Delgado-Baquerizo, X. Guo, D. Wang, Y.-G. Zhu, and H. Chu. 2021. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME J. 15(2), 550-561. Doi: https://doi.org/10.1038/s41396-020-00796-8
- Fan, M., Z. Liu, L. Nan, E. Wang, W. Chen, Y. Lin, and G. Wei. 2018. Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiol. Res. 217, 51-59. Doi: https://doi.org/10.1016/j.micres.2018.09.002
- Fasusi, O.A., A.E. Amoo, and O.O. Babalola. 2021. Characterization of plant growth-promoting rhizobacterial isolates associated with food plants in South Africa. Anton. Leeuw. 114(10), 1683-1708. Doi: https://doi.org/10.1007/s10482-021-01633-4
- Freeman, L.C. 1977. A set of measures of centrality based on betweenness. Sociometry 40(1), 35-41. Doi: https://doi.org/10.2307/3033543
- Gao, J.-L., M.S. Khan, Y.-C. Sun, J. Xue, Y. Du, C. Yang, V.K. Chebotar, V.S. Tikunov, I.N. Rubanov, X. Chen, and X. Zhang. 2022. Characterization of an endophytic antagonistic bacterial strain LBG-1-13 with Multiple plant growth-promoting traits, stress tolerance, and its effects on lily growth. BioMed Res. Int. 2022, 5960004. Doi: https://doi.org/10.1155/2022/5960004
- Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41(2), 109-117. Doi: https://doi.org/10.1139/m95-015
- Glick, B.R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012, 963401. Doi: https://doi.org/10.6064/2012/963401
- Gohil, R.B., V.H. Raval, R.R. Panchal, and K.N. Rajput. 2022. Plant growth-promoting activity of Bacillus sp. PG-8 isolated from fermented panchagavya and its effect on the growth of Arachis hypogea. Front. Agron. 4, 805454. Doi: https://doi.org/10.3389/fagro.2022.805454
- Gordon, S.A. and R.P. Weber. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26(1), 192-195. Doi: https://doi.org/10.1104/pp.26.1.192
- Govindasamy, V., P. George, S.V. Ramesh, P. Sureshkumar, J. Rane, and P.S. Minhas. 2022. Characterization of root-endophytic actinobacteria from cactus (Opuntia ficus-indica) for plant growth promoting traits. Arch. Microbiol. 204(2), 150. Doi: https://doi.org/10.1007/s00203-021-02671-2
- Govindasamy, V., M. Senthilkumar, K. Gaikwad, and K. Annapurna. 2008. Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. Curr. Microbiol. 57(4), 312-317. Doi: https://doi.org/10.1007/s00284-008-9195-8
- Goyal, D., S. Kumar, D. Meena, S.S. Solanki, S. Swaroop, and J. Pandey. 2022. Selection of ACC deaminase positive, thermohalotolerant and drought tolerance enhancing plant growth-promoting bacteria from rhizospheres of Cyamopsis tetragonoloba grown in arid regions. Lett. Appl. Microbiol. 74(4), 519-535. Doi: https://doi.org/10.1111/lam.13633
- Gu, Y., J. Wang, Z. Xia, and H.-L. Wei. 2020. Characterization of a versatile plant growth-promoting rhizobacterium Pseudomonas mediterranea strain S58. Microorganisms 8(3), 334. Doi: https://doi.org/10.3390/microorganisms8030334
- Gurzki, H. and D.M. Woisetschläger. 2017. Mapping the luxury research landscape: a bibliometric citation analysis. J. Bus. Res. 77, 147-166. Doi: https://doi.org/10.1016/j.jbusres.2016.11.009
- Gutiérrez-Calvo, A.E., A. Gutiérrez, C.L. Miceli-Méndez, and M.A. López-Miceli. 2022. Efectos de Bacillus subtilis cepas GBO3 y IN937b en el crecimiento de maíz (Zea mays L.). Polibotanica (53), 211-218. Doi: https://doi.org/10.18387/polibotanica.53.14
- Helal, D.S., H. El-Khawas, and T.R. Elsayed. 2022. Molecular characterization of endophytic and ectophytic plant growth promoting bacteria isolated from tomato plants (Solanum lycopersicum L.) grown in different soil types. J. Genet. Eng. Biotechnol. 20(1), 79. Doi: https://doi.org/10.1186/s43141-022-00361-0
- Hyder, S., A.S. Gondal, Z.F. Rizvi, R. Ahmad, M.M. Alam, A. Hannan, W. Ahmed, N. Fatima, and M. Inam-Ul-Haq. 2020. Characterization of native plant growth promoting rhizobacteria and their anti-oomycete potential against Phytophthora capsici affecting chilli pepper (Capsicum annum L.). Sci. Rep. 10(1), 13859. Doi: https://doi.org/10.1038/s41598-020-69410-3
- Idaszkin, Y.L., R. Polifroni, and J. Mesa-Marín. 2021. Isolation of plant growth promoting rhizobacteria from Spartina densiflora and Sarcocornia perennis in San Antonio polluted salt marsh, Patagonian Argentina. Estuar. Coast. Shelf Sci. 260, 107488. Doi: https://doi.org/10.1016/j.ecss.2021.107488
- Issifu, M., E.K. Songoro, S. Niyomukiza, E.M. Ateka, J. Onguso, and V.W. Ngumi. 2022. Identification and in vitro characterization of plant growth-promoting Pseudomonas spp. isolated from the rhizosphere of tomato (Lycopersicum esculentum) plants in Kenya. Univ. J. Agric. Res. 10(6), 667-681. Doi: https://doi.org/10.13189/ujar.2022.100608
- Jana, G.A. and M.W. Yaish. 2020. Isolation and functional characterization of a mVOC producing plant-growth-promoting bacterium isolated from the date palm rhizosphere. Rhizosphere 16, 100267. Doi: https://doi.org/10.1016/j.rhisph.2020.100267
- Jatan, R., S. Tiwari, M.H. Asif, and C. Lata. 2019. Genome-wide profiling reveals extensive alterations in Pseudomonas putida-mediated miRNAs expression during drought stress in chickpea (Cicer arietinum L.). Environ. Exp. Bot. 157, 217-227. Doi: https://doi.org/10.1016/j.envexpbot.2018.10.003
- Javoreková, S., R. Cinkocki, J. Maková, and N. Hricáková. 2021. Isolation and identification of rhizobacteria from maize (Zea mays L.) in luvisols and documentation their plant growth promoting traits. J. Microbiol. Biotechnol. Food Sci. 10(3), 505-510. Doi: https://doi.org/10.15414/jmbfs.2020.10.3.505-510
- Jhuma, T.A., J. Rafeya, S. Sultana, M.T. Rahman, and M.M. Karim. 2021. Isolation of endophytic salt-tolerant plant growth-promoting rhizobacteria from Oryza sativa and evaluation of their plant growth-promoting traits under salinity stress condition. Front. Sustain. Food Syst. 5, 687531. Doi: https://doi.org/10.3389/fsufs.2021.687531
- Ji, S.H., M.A. Gururani, and S.-C. Chun. 2014. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol. Res. 169(1), 83-98. Doi: https://doi.org/10.1016/j.micres.2013.06.003
- Khalifa, A.Y.Z., A.-M. Alsyeeh, M.A. Almalki, and F.A. Saleh. 2016. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa. Saudi J. Biol. Sci. 23(1), 79-86. Doi: https://doi.org/10.1016/j.sjbs.2015.06.008
- Khezrinejad, N., G. Khodakaramian, and F. Shahryari. 2019. Characterization of potential plant growth-promoting rhizobacteria isolated from sunflower (Helianthus annuus L.) in Iran. Biol. Futura 70(4), 268-277. Doi: https://doi.org/10.1556/019.70.2019.30
- Kumar, P., R.C. Dubey, D.K. Maheshwari, Y.-H. Park, and V.K. Bajpai. 2016. Isolation of plant growth-promoting Pseudomonas sp. PPR8 from the rhizosphere of Phaseolus vulgaris L. Arch. Biol. Sci. 68(2), 363-374. Doi: https://doi.org/10.2298/ABS150701028K
- Kumari, P., M. Meena, and R.S. Upadhyay. 2018. Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatal. Agric. Biotechnol. 16, 155-162. Doi: https://doi.org/10.1016/j.bcab.2018.07.029
- Landinez, D.A., S. Robledo, and D.M. Montoya. 2019. Executive function performance in patients with obesity: A systematic review. Psychologia 13(2), 121-134. Doi: https://doi.org/10.21500/19002386.4230
- Lelapalli, S., S. Baskar, S.M. Jacob, and S. Paranthaman. 2021. Characterization of phosphate solubilizing plant growth promoting rhizobacterium Lysinibacillus pakistanensis strain PCPSMR15 isolated from Oryza sativa. Curr. Res. Microb. Sci. 2, 100080. Doi: https://doi.org/10.1016/j.crmicr.2021.100080
- Leontidou, K., S. Genitsaris, A. Papadopoulou, N. Kamou, I. Bosmali, T. Matsi, P. Madesis, D. Vokou, K. Karamanoli, and I. Mellidou. 2020. Plant growth promoting rhizobacteria isolated from halophytes and drought-tolerant plants: genomic characterisation and exploration of phyto-beneficial traits. Sci. Rep. 10(1), 14857. Doi: https://doi.org/10.1038/s41598-020-71652-0
- Li, Y., X. You, Z. Tang, T. Zhu, B. Liu, M.-X. Chen, Y. Xu, and T.-Y. Liu. 2022. Isolation and identification of plant growth-promoting rhizobacteria from tall fescue rhizosphere and their functions under salt stress. Physiol. Plant. 174(6), e13817. Doi: https://doi.org/10.1111/ppl.13817
- Liu, Z., H. Wang, W. Xu, and Z. Wang. 2020. Isolation and evaluation of the plant growth promoting rhizobacterium Bacillus methylotrophicus (DD-1) for growth enhancement of rice seedling. Arch. Microb. 202(8), 2169-2179. Doi: https://doi.org/10.1007/s00203-020-01934-8
- Majeed, A., M.K. Abbasi, S. Hameed, A. Imran, and N. Rahim. 2015. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front. Microbiol. 6, 198. Doi: https://doi.org/10.3389/fmicb.2015.00198
- Malisorn, K., S. Chanchampa, P. Kanchanasin, and S. Tanasupawat. 2020. Identification and plant growth-promoting activities of proteobacteria isolated from root nodules and rhizospheric soils. Curr. Appl. Sci. Technol. 20(3), 479-493. https://li01.tci-thaijo.org/index.php/cast/article/view/244518
- Mghazli, N., O. Bruneel, R. Zouagui, R. Hakkou, and L. Sbabou. 2022. Characterization of plant growth promoting activities of indigenous bacteria of phosphate mine wastes, a first step toward revegetation. Front. Microbiol. 13, 1026991. Doi: https://doi.org/10.3389/fmicb.2022.1026991
- Munawar, A., M. Shaheen, S. Ramzan, S.A. Masih, F. Jabeen, T. Younis, and M. Aslam. 2023. Diversity and enzymatic potential of indigenous bacteria from unexplored contaminated soils in Faisalabad. Heliyon 9(4), e15256. Doi: https://doi.org/10.1016/j.heliyon.2023.e15256
- Mushtaq, S., M. Shafiq, T. Ashraf, M.S. Haider, M. Ashfaq, and M. Ali. 2019. Characterization of plant growth promoting activities of bacterial endophytes and their antibacterial potential isolated from citrus. J. Anim. Plant Sci. 29(4), 978-991. http://www.thejaps.org.pk/docs/v-29-04/10.pdf
- Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170(1), 265-270. Doi: https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
- Ong, J.D.P., N.B. Lantican, W.T. Cruz, M.G.Q. Diaz, and E.S. Paterno. 2018. Characterization of plant growth-promoting diazotrophs from salt-affected areas in the Philippines. Philip. J. Crop Sci. 43(1), 56-68.
- Orozco-Mosqueda, M.C. and G. Santoyo. 2021. Plant-microbial endophytes interactions: Scrutinizing their beneficial mechanisms from genomic explorations. Curr. Plant Biol. 25, 100189. Doi: https://doi.org/10.1016/j.cpb.2020.100189
- Pandey, A., A. Tripathi, P. Srivastava, K.K. Choudhary, and A. Dikshit. 2019. Plant growth-promoting microorganisms in sustainable agriculture. pp. 1-19. In: Kumar, A., A.K. Singh, and K.K. Choudhary (eds.). Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology. Elsevier. Doi: https://doi.org/10.1016/b978-0-12-817004-5.00001-4
- Panigrahi, S., S. Mohanty, and C.C. Rath. 2020. Characterization of endophytic bacteria Enterobacter cloacae MG00145 isolated from Ocimum sanctum with indole acetic acid (IAA) production and plant growth promoting capabilities against selected crops. South Afr. J. Bot. 134, 17-26. Doi: https://doi.org/10.1016/j.sajb.2019.09.017
- Patten, C.L. and B.R. Glick. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68(8), 3795-3801. Doi: https://doi.org/10.1128/AEM.68.8.3795-3801.2002
- Penrose, D.M., and B.R. Glick. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 118(1), 10-15. Doi: https://doi.org/10.1034/j.1399-3054.2003.00086.x
- Pikovskaya, R. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17, 362-370. https://cir.nii.ac.jp/crid/1571417126003636736
- Posada, A.M., D.P. Mejía, D. Polanco-Echeverry, and J.A. Cardona. 2021. Rizobacterias promotoras de crecimiento vegetal (PGPR): una revisión sistemática 1990-2019. Rev. Inv. Agrar. Ambient. 12(2), 161-178. Doi: https://doi.org/10.22490/21456453.4040
- Pranckutė, R. 2021. Web of Science (WoS) and Scopus: the titans of bibliographic information in today’s academic world. Publications 9(1), 12. Doi: https://doi.org/10.3390/publications9010012
- Queiroz, M.M. and S.F. Wamba. 2021. A structured literature review on the interplay between emerging technologies and COVID-19 - insights and directions to operations fields. Ann. Oper. Res. Doi: https://doi.org/10.1007/s10479-021-04107-y
- Rabelo-Flórez, R.A. 2023. Bacterias y hongos utilizados en la biodegradación de hidrocarburos: Una revisión de literatura y análisis bibliométrico. Rev. EIA 20(39), 3913. Doi: https://doi.org/10.24050/reia.v20i39.1622
- Ramos-Enríquez, V., P. Duque, and J.A. Vieira. 2021. Responsabilidad social corporativa y emprendimiento: evolución y tendencias de investigación. Desarro. Gerenc. 13(1), 1-34. Doi: https://doi.org/10.17081/dege.13.1.4210
- Robledo, S., G. Osorio, and C. López. 2014. Networking en pequeña empresa: una revisión bibliográfica utilizando la teoria de grafos. Rev. Vínculos 11(2), 6-16.
- Sachman-Ruíz, B., A. Wong-Villarreal, L. Aguilar-Marcelino, L.F. Lozano-Aguirre, S. Espinosa-Zaragoza, A.L. Reyes-Reyes, D. Sanzón-Gómez, A.I. Mireles-Arriaga, R. Romero-Tirado, M.K. Rocha-Martínez, J.D. Pérez-de la Rosa, R. Sánchez-Cruz, and J.A. Gómez-Gutiérrez. 2022. Nematicidal, acaricidal and plant growth-promoting activity of endophytic strains and identification of genes associated with these biological activities in the genomes. Plants 11(22), 3136. Doi: https://doi.org/10.3390/plants11223136
- Saengsanga, T. 2018. Isolation and characterization of indigenous plant growth-promoting rhizobacteria and their effects on growth at the early stage of Thai Jasmine rice (Oryza sativa L. kdml105). Arab. J. Sci. Eng. 43(7), 3359-3369. Doi: https://doi.org/10.1007/s13369-017-2999-8
- Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4), 406-425. Doi: https://doi.org/10.1093/oxfordjournals.molbev.a040454
- Saravanakumar, D. 2019. Gene-based approach for selection of plant-growth-promoting rhizobacteria for plant disease control. Trop. Agricul. 95(4). https://journals.sta.uwi.edu/ojs/index.php/ta/article/view/6631
- Scagliola, M., Y. Pii, T. Mimmo, S. Cesco, P. Ricciuti, and C. Crecchio. 2016. Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency. Plant Physiol. Biochem. 107, 187-196. Doi: https://doi.org/10.1016/j.plaphy.2016.06.002
- Schwyn, B. and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160(1), 47-56. Doi: https://doi.org/10.1016/0003-2697(87)90612-9
- Secinaro, S., F. Dal Mas, V. Brescia, and D. Calandra. 2022. Blockchain in the accounting, auditing and accountability fields: a bibliometric and coding analysis. Account. Audit. Account. J. 35(9), 168-203. Doi: https://doi.org/10.1108/aaaj-10-2020-4987
- Singh, T.B., V. Sahai, D. Goyal, M. Prasad, A. Yadav, P. Shrivastav, A. Ali, and P.K. Dantu. 2020. Identification, characterization and evaluation of multifaceted traits of plant growth promoting rhizobacteria from soil for sustainable approach to agriculture. Curr. Microb. 77(11), 3633-3642. Doi: https://doi.org/10.1007/s00284-020-02165-2
- Singha, B., P.B. Mazumder, and P. Pandey. 2017. Characterization of plant growth promoting rhizobia from root nodule of two legume species cultivated in Assam, India. Proc. Natl. Acad. Sci. 88(3), 1007-1016. Doi: https://doi.org/10.1007/s40011-016-0836-6
- South, K.A., N.P. Nordstedt, and M.L. Jones. 2021. Identification of plant growth promoting rhizobacteria that improve the performance of greenhouse-grown petunias under low fertility conditions. Plants 10(7), 1410. Doi: https://doi.org/10.3390/plants10071410
- Tabacchioni, S., S. Passato, P. Ambrosino, L. Huang, M. Caldara, C. Cantale, J. Hett, A. Del Fiore, A. Fiore, A. Schlüter, A. Sczyrba, E. Maestri, N. Marmiroli, D. Neuhoff, J. Nesme, S.J. Sørensen, G. Aprea, C. Nobili, O. Presenti, G. Giovannetti, C. Giovannetti, A. Pihlanto, A. Brunori, and A. Bevivino. 2021. Identification of beneficial microbial consortia and bioactive compounds with potential as plant biostimulants for a sustainable agriculture. Microorganisms 9(2), 426. Doi: https://doi.org/10.3390/microorganisms9020426
- Tang, Y.W. and J. Bonner. 1948. The enzymatic inactivation of indole acetic acid. II. The physiology of the enzyme. Am. J. Bot. 35(9), 570-578. https://doi.org/10.2307/2438053
- Tang, L., Y. Shi, Y. Zhang, D. Yang, and C. Guo. 2023. Effects of plant-growth-promoting rhizobacteria on soil bacterial community, soil physicochemical properties, and soil enzyme activities in the rhizosphere of alfalfa under field conditions. Diversity 15(4), 537. https://doi.org/10.3390/d15040537
- Tani, M., O. Papaluca, and P. Sasso. 2018. The system thinking perspective in the open-innovation research: a systematic review. J. Open Innov.: Technol. Mark. Complex. 4(3), 38. Doi: https://doi.org/10.3390/joitmc4030038
- Tanya, M. and M. Leiva-Mora. 2019. Microorganismos eficientes, propiedades funcionales y aplicaciones agrícolas. Ctro. Agr. 46(2), 93-103. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0253-57852019000200093
- Torres, G., S. Robledo, and S. Rojas. 2021. Orientación al mercado: importancia, evolución y enfoques emergentes usando análisis cienciométrico. Criterio Libre 19(35), 326-340. Doi: https://doi.org/10.18041/1900-0642/criteriolibre.2021v19n35.8371
- Trejos-Salazar, D.F., P.L. Duque-Hurtado, L.A. Montoya-Restrepo, and I.A. Montoya-Restrepo. 2021. Neuroeconomía: una revisión basada en técnicas de mapeo científico. Rev. Invest. Desarro. Innov. 11(2), 243-260. Doi: https://doi.org/10.19053/20278306.v11.n2.2021.12754
- Umapathi, M., C.N. Chandrasekhar, A. Senthil, T. Kalaiselvi, R. Santhi, and R. Ravikesavan. 2022. Isolation, characterization and plant growth-promoting effects of sorghum [Sorghum bicolor (L.) moench] root-associated rhizobacteria and their potential role in drought mitigation. Arch. Microbiol. 204(6), 354. Doi: https://doi.org/10.1007/s00203-022-02939-1
- Urgiles-Gómez, N., M.E. Avila-Salem, P. Loján, M. Encalada, L. Hurtado, S. Araujo, Y. Collahuazo, J. Guachanamá, N. Poma, K. Granda, A. Robles, C. Senés, and P. Cornejo. 2021. Plant growth-promoting microorganisms in coffee production: from isolation to field application. Agronomy 11(8), 1531. Doi: https://doi.org/10.3390/agronomy11081531
- Valencia-Hernández, D.-S., S. Robledo, R. Pinilla, N.D. Duque-Méndez, and G. Olivar-Tost. 2020. SAP algorithm for citation analysis: an improvement to tree of science. Ing. Invest. 40(1), 45-49. Doi: https://doi.org/10.15446/ing.investig.v40n1.77718
- Vega-Celedón, P., G. Bravo, A. Velásquez, F.P. Cid, M. Valenzuela, I. Ramírez, I.-N. Vasconez, I. Álvarez, M.A. Jorquera, and M. Seeger. 2021. Microbial diversity of psychrotolerant bacteria isolated from wild flora of Andes mountains and Patagonia of Chile towards the selection of plant growth-promoting bacterial consortia to alleviate cold stress in plants. Microorganisms 9(3), 538. Doi: https://doi.org/10.3390/microorganisms9030538
- Vera-Baceta, M.-A., M. Thelwall, and K. Kousha. 2019. Web of Science and Scopus language coverage. Scientometrics 121(3), 1803-1813. Doi: https://doi.org/10.1007/s11192-019-03264-z
- Vurukonda, S.S. 2020. Agricoltura simbiotica: aumentare le conoscenze sulle modalità di azione dei microrganismi benefici. PhD thesis. Università degli studi di Modena e Reggio Emilia. http://hdl.handle.net/11380/1201054
- Wallis, W.D. 2007. A beginner’s guide to graph theory. 2nd ed. Birkhauser, Boston, MA. Doi: https://doi.org/10.1007/978-0-8176-4580-9
- Weisburg, W.G., S.M. Barns, D.A. Pelletier, and D.J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173(2), 697-703. Doi: https://doi.org/10.1128/jb.173.2.697-703.1991
- Wu, Z., Z. Kong, S. Lu, C. Huang, S. Huang, Y. He, and L. Wu. 2019. Isolation, characterization and the effect of indigenous heavy metal-resistant plant growth-promoting bacteria on sorghum grown in acid mine drainage polluted soils. J. Gen. Appl. Microbiol. 65(5), 254-264. Doi: https://doi.org/10.2323/jgam.2018.11.004
- Yaish, M.W., I. Antony, and B.R. Glick. 2015. Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Anton. Leeuw. 107(6), 1519-1532. Doi: https://doi.org/10.1007/s10482-015-0445-z
- Yang, S., F.B. Keller, and L. Zheng. 2017. Social network analysis: methods and examples. SAGE Publications. Doi: https://doi.org/10.4135/9781071802847
- Zahid, M., M.K. Abbasi, S. Hameed. and N. Rahim. 2015. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea Mays L.). Front. Microbiol. 6, 207. Doi: https://doi.org/10.3389/fmicb.2015.00207
- Zhang, J. and Y. Luo. 2017. Degree centrality, betweenness centrality, and closeness centrality in social network. pp. 300-303. In: Proc. 2017 2nd International Conference on Modelling, Simulation and Applied Mathematics (MSAM2017). Atlantis Press. Doi: https://doi.org/10.2991/msam-17.2017.68
- Zhu, J. and W. Liu. 2020. A tale of two databases: the use of Web of Science and Scopus in academic papers. Scientometrics 123(1), 321-335. Doi: https://doi.org/10.1007/s11192-020-03387-8
- Zhu, Z., H. Zhang, J. Leng, H. Niu, X. Chen, D. Liu, Y. Chen, N. Gao, and H. Ying. 2020. Isolation and characterization of plant growth-promoting rhizobacteria and their effects on the growth of Medicago sativa L. under salinity conditions. Anton. Leeuw. 113(9), 1263-1278. Doi: https://doi.org/10.1007/s10482-020-01434-1
- Zuluaga, M.Y.A., K.M. Lima Milani, L.S. Azeredo Gonçalves, and A.L. Martinez de Oliveira. 2020. Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum. PloS One 15(1), e0227422. Doi: https://doi.org/10.1371/journal.pone.0227422
- Zupic, I. and T. Čater. 2015. Bibliometric methods in management and organization. Organ. Res. Methods. 18(3), 429-452. Doi: https://doi.org/10.1177/1094428114562629
- Zuschke, N. 2020. An analysis of process-tracing research on consumer decision-making. J. Bus. Res. 111, 305-320. Doi: https://doi.org/10.1016/j.jbusres.2019.01.028