Skip to main navigation menu Skip to main content Skip to site footer

Photosynthetic capacity, phenology, yield and chemical composition of seeds of three cultivar of quinoa (Chenopodium quinoa Willd.)

Abstract

Quinoa is an Andean grain recognized for its high nutritional value and its ability to tolerate extreme environmental conditions. Most publications on this species have focused on agronomic or agroindustrial aspects, leaving uncertainties about the relationship between biological yield and compositional characteristics of the grain. Therefore, the objective of this study was to analyze the biological performance and agroindustrial properties of the seeds of three quinoa cultivars widely used in Colombia. A completely randomized design was used with the Pasankalla, Soraca and Titicaca cultivars. The first phase involved the evaluation of the physiological behavior of the plants under controlled conditions. In the second phase, seed production and some compositional characteristics were determined in the laboratory. In general, the three cultivars showed significant diversity and differences in morphological, physiological and biochemical traits. The Titicaca cultivar presented the earliest maturity, taking 115.6 days to reach harvest, while Soraca was the cultivar with the highest production, achieving 321 g of seeds per plant. Regarding the characteristics of the grain, the Soraca and Pasankalla cultivars had the highest protein content, with values of 14.33 and 13.76%, respectively.

Keywords

Chlorophyll, Plant growth, Seed protein, Stomatal conductance, Starch

XML PDF

References

  1. Amjad, M., S.S. Akhtar, A. Yang, J. Akhtar, and S.-E. Jacobsen. 2015. Antioxidative response of quinoa exposed to iso-osmotic, ionic and non-ionic salt stress. J. Agron. Crop Sci. 201(6), 452-460. Doi: https://doi.org/10.1111/jac.12140
  2. Angeli, V., P.M. Silva, D.S. Massuela, M.W. Khan, A. Hamar, F. Khajehei, S. Graeff-Hänninger, and C. Piatti. 2020. Quinoa (Chenopodium quinoa Willd.): an overview of the potentials of the “golden grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods 9(2), 216. Doi: https://doi.org/10.3390/foods9020216
  3. Baker, M.J. J. Trevisan, P. Bassan, R. Bhargava, H.J. Butler, K.M. Dorling, P.R. Fielden, S.W. Fogarty, N.J. Fullwood, K.A. Heys, C. Hughes, P. Lasch, P.L. Martin-Hirsch, B. Obinaju, G.D. Sockalingum, J. Sulé-Suso, R.J. Strong, M.J. Walsh, B.R. Wood, P. Gardner, and F.L. Martin. 2014. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771-1791. Doi: https://doi.org/10.1038/nprot.2014.110
  4. Bazile, D., S.-E. Jacobsen, and A. Verniau. 2016. The global expansion of quinoa: trends and limits. Front. Plant Sci. 7, 622. Doi: https://doi.org/10.3389/fpls.2016.00622
  5. Cruces, L., E. de la Peña, and P. de Clercq. 2024. Advances in the integrated pest management of quinoa (Chenopodium quinoa Willd.): a global perspective. Insects 15(7), 540. Doi: https://doi.org/10.3390/insects15070540
  6. Czekus, B., I. Pećinar, I. Petrović, N. Paunović, S. Savić, Z. Jovanović, and R. Stikić. 2019. Raman and Fourier transform infrared spectroscopy application to the Puno and Titicaca cvs. of quinoa seed microstructure and perisperm characterization. J. Cereal Sci. 87, 25-30. Doi: https://doi.org/10.1016/j.jcs.2019.02.011
  7. Delgado, A.I., J.H. Palacios, and C. Betancourt. 2009. Evaluación de 16 genotipos de quinua dulce (Chenopodium quinoa Willd.) en el municipio de Iles, Nariño (Colombia). Agron. Colomb. 27(2), 159-167.
  8. Doria, J. 2010. Generalidades sobre las semillas: su producción, conservación y almacenamiento. Cult. Trop. 31(1), 74-85.
  9. Eustis, A., K.M. Murphy, and F.H. Barrios-Masias. 2020. Leaf gas exchange performance of ten quinoa genotypes under a simulated heat wave. Plants 9(1), 81. Doi: https://doi.org/10.3390/plants9010081
  10. El-Harty, E.H., A. Ghazy, T.K. Alateeq, S.A. Al-Faifi, M.A. Khan, M. Afzal, S.S. Alghamdi, and H.M. Migdadi. 2021. Morphological and molecular characterization of quinoa genotypes. Agriculture 11(4), 286. Doi: https://doi.org/10.3390/agriculture11040286
  11. García-Parra, M., J. García-Molano, and Y. Deaquiz-Oyola. 2019b. Physiological performance of quinoa (Chenopodium quinoa Willd.) under agricultural climatic conditions in Boyaca, Colombia. Agron. Colomb. 37(3), 160-168. Doi: https://doi.org/10.15446/agron.colomb.v37n2.76219
  12. García-Parra, M., J.F. García-Molano, and C.A. Quito. 2019a. Efecto de la salinidad por NaCl en el crecimiento y desarrollo de plantas de Chenopodium quinoa Willd. Cienc. Desarro. 10(1), 19-29. Doi: https://doi.org/10.19053/01217488.v10.n1.2019.8341
  13. García-Parra, M., D. Roa-Acosta, and J.E. Bravo-Gómez. 2022. Effect of the altitude gradient on the physiological performance of quinoa in the Central region of Colombia. Agronomy 12(9), 2112. Doi: https://doi.org/10.3390/agronomy12092112
  14. García-Parra, M., R. Stechauner-Rohringer, J.F. Garcia-Molano, and D. Ortiz-Gonzalez. 2020c. Analysis of the growth and morpho-physiological performance of three cultivars of Colombian quinoa grown under a greenhouse. Rev. Ciênc. Agrovet. 19(1), 73-83. Doi: https://doi.org/10.5965/223811711912020073
  15. García-Parra, M., R. Stechauner-Rohringer, D. Roa-Acosta, D. Ortiz-González, J. Ramirez-Correa, N. Plazas-Leguizamón, and A. Colmenares-Cruz. 2020b. Chlorophyll fluorescence and its relationship with physiological stress in Chenopodium quinoa Willd. Not. Bot. Horti. Agrobo. 48(4), 1742-1755. Doi: https://doi.org/10.15835/nbha48412059
  16. García-Parra, M., A. Zurita-Silva, R. Stechauner-Rohringer, D. Roa-Acosta, and S.-E. Jacobsen. 2020a. Quinoa (Chenopodium quinoa Willd.) and its relationship with agroclimatic characteristics: A Colombian perspective. Chil. J. Agric. Res. 80(2), 290-302. Doi: https://doi.org/10.4067/S0718-58392020000200290
  17. Gómez, L. and E. Aguilar. 2016. Guía de cultivo de la quinua. FAO, Lima.
  18. Gonzalez, J.A., Y. Konishi, M. Bruno, M. Valoy, and F.E. Prado. 2012. Interrelationships among seed yield, total protein and amino acid composition of ten quinoa (Chenopodium quinoa) cultivars from two different agroecological regions. J. Sci. Food Agric. 92(6), 1222-1229. Doi: https://doi.org/10.1002/jsfa.4686
  19. Guerrero, A. 2018. Impacto del cultivo de la quinua (Chenopodium quinoa Willd) como alternativa productiva y socioeconómica en la comunidad indígena Yanacona de La Vega, Cauca, Colombia. PhD thesis. Universidad Nacional de Colombia, Palmira, Colombia.
  20. Hernández-Ledesma, B. 2019. Quinoa (Chenopodium quinoa Willd.) as source of bioactive compounds: a review. Bioact. Compd. Health Dis. 2(3), 1-27. Doi: https://doi.org/10.31989/bchd.v2i3.556
  21. Hinojosa, L., J.A. González, F.H. Barrios-Masias, F. Fuentes, and K.M. Murphy. 2018. Quinoa abiotic stress responses: a review. Plants 7(4), 106. Doi: https://doi.org/10.3390/plants7040106
  22. Hinojosa, L., J.B. Matanguihan, and K.M. Murphy. 2019. Effect of high temperature on pollen morphology, plant growth and seed yield in quinoa (Chenopodium quinoa Willd.). J. Agron. Crop Sci. 205, 33-45. Doi: https://doi.org/10.1111/jac.12302
  23. Infante, H., S. Albesiano, L. Arrieta, and N. Gómez. 2018. Morphological characterization of varieties Chenopodium quinoa cultivated in the department of Boyacá, Colombia. Rev. U.D.C.A Act. Div. Cient. 21(2), 329-339. Doi: https://doi.org/10.31910/rudca.v21.n2.2018.977
  24. Issa Ali, O., R. Fghire, F. Anaya, O. Benlhabib, and S. Wahbi. 2019. Physiological and morphological responses of two quinoa cultivars (Chenopodium quinoa Willd.) to drought stress. Gesunde Pflanzen 71, 123-133. Doi: https://doi.org/10.1007/s10343-019-00460-y
  25. Jacobsen, S.-E., A. Mujica, and C.R. Jensen. 2003. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev. Int. 19(1-2), 99-109. Doi: https://doi.org/10.1081/FRI-120018872
  26. Jiménez-Suancha, S.C., O.H. Alvarado, and E.H. Balaguera-López. 2015. Fluorescencia como indicador de estrés en Helianthus annuus L. Una revisión. Rev. Colomb. Cienc. Hortic. 9(1), 149-160. Doi: https://doi.org/10.17584/rcch.2015v9i1.3753
  27. Madrid, D., E. Salgado, G. Verdugo, P. Olguín, D. Bilalis, and F. Fuentes. 2018. Morphological traits defining breeding criteria for coastal quinoa in Chile. Not. Bot. Horti. Agrobo. 46(1), 190-196. Doi: https://doi.org/10.15835/nbha46110788
  28. Mamedi, A., R. Tavakkol, and M. Oveisi. 2017. Cardinal temperatures for seed germination of three quinoa (Chenopodium quinoa Willd.) cultivars. Iran. J. Field. Crop Sci. 2017, 89-100.
  29. Manjarres-Hernández, E.H., D.M. Arias-Moreno, A.C. Morrillo-Coronado, Z.Z. Ojeda-Pérez, and A. Cárdenas-Chaparro. 2021a. Phenotypic characterization of quinoa (Chenopodium quinoa Willd.) for the selection of promising materials for breeding programs. Plants 10(7), 1339. Doi: https://doi.org/10.3390/plants10071339
  30. Manjarres-Hernández, E.H., A.C. Morillo-Coronado, Z.Z. Ojeda-Perez, A. Cárdenas-Chaparro, and D.M. Arias-Moreno. 2021b. Characterization of the yield components and selection of materials for breeding programs of quinoa (Chenopodium quinoa Willd.). Euphytica 217(1), 101. Doi: https://doi.org/10.1007/s10681-021-02837-5
  31. Melo, D.I. 2016. Studio di adattabilità colturale della quinoa (Chenopodium quinoa Willd.) in Italia settentrionale. PhD thesis. Università Cattolica del Sacro Cuore di Piacenza, Italia settentrionale. PhD thesis. Università Cattolica del Sacro Cuore, Piacenza, Italy.
  32. Morillo-Coronado, A., M. Castro-Roberto, and Y. Morillo-Coronado. 2017. Caracterización de la diversidad genética de una colección de quinua (Chenopodium quinoa Willd). Rev. Biotecnol. Sector Agropecu. Agroind. 15(2), 49-56. Doi: https://doi.org/10.18684/BSAA(15)49-56
  33. Morillo-Coronado, A.C., E.H. Manjarres-Hernández, and Y. Morillo-Coronado. 2020. Evaluación morfoagronómica de 19 materiales de Chenopodium quinoa en el departamento de Boyacá. Biotecnol. Sector Agropecu. Agroind. 18(1), 84-96. Doi: https://doi.org/10.18684/bsaa.v18n1.1416
  34. Ortiz-Gómez, V., J.E. Nieto-Calvache, D.F. Roa-Acosta, J.F. Solanilla-Duque, and J.E. Bravo-Gómez. 2022. Preliminary characterization of structural and rheological behavior of the quinoa hyperprotein-defatted flour. Front. Sustain. Food Syst. 6, 852332. Doi: https://doi.org/10.3389/fsufs.2022.852332
  35. Polo-Muñoz, M.P., M.Á.Garcia-Parra, and D.F. Roa-Acosta. 2023. Viscoelastic behavior of gels obtained from five cultivars of quinoa at altitude gradient. Front. Sustain. Food Syst. 7, 1222277. Doi: https://doi.org/10.3389/fsufs.2023.1222277
  36. Ramzani, P.M.A. L. Shan, S. Anjum, W.-ud-D. Khan, H. Ronggui, M. Iqbal, Z.A. Virk, and S. Kausar. 2017. Improved quinoa growth, physiological response, and seed nutritional quality in three soils having different stresses by the application of acidified biochar and compost. Plant Physiol. Biochem. 116, 127-138. Doi: https://doi.org/10.1016/j.plaphy.2017.05.003
  37. Reguera, M., C.M. Conesa, A. Gil-Gómez, C.M. Haros, M.Á. Pérez-Casas, V. Briones-Labarca, L. Bolaños, I. Bonilla, R. Álvarez, K. Pinto, Á. Mujica, and L. Bascuñán-Godoy. 2018. The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ 6, e4442. Doi: https://doi.org/10.7717/peerj.4442
  38. Roa, D.F., P.R. Santagapita, M.P. Buera, and M.P. Tolaba. 2014. Amaranth milling strategies and fraction characterization by FT-IR. Food Bioprocess. Technol. 7(1), 711-718. Doi: https://doi.org/10.1007/s11947-013-1050-7
  39. Roa-Acosta, D.F., J.E. Bravo-Gómez, M.A. García-Parra, R. Rodríguez-Herrera, and J.F. Solanilla-Duque. 2020. Hyper-protein quinoa flour (Chenopodium quinoa Wild): monitoring and study of structural and rheological properties. Lwt 121, 108952. Doi: https://doi.org/10.1016/j.lwt.2019.108952
  40. Rodríguez-Sandoval, E., A. Lascano, and G. Sandoval. 2012. Influencia de la sustitución parcial de la harina de trigo por harina de quinua y papa en las propiedades termomecánicas y de panificación de masas. Rev. U.D.C.A Act. Div. Cient. 15(1), 199-207. Doi: https://doi.org/10.31910/rudca.v15.n1.2012.817
  41. Shabala, S., Y. Hariadi, and S.-E. Jacobsen. 2013. Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density. J. Plant Physiol. 170(1), 906-914. Doi: https://doi.org/10.1016/j.jplph.2013.01.014
  42. Sosa-Zuniga, V., V. Brito, F. Fuentes, and U. Steinfort. 2017. Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Ann. Appl. Biol. 171(1), 117-124. Doi: https://doi.org/10.1111/aab.12358
  43. Taiz, L. and E. Zeiger. 2010. Plant physiology. 5th ed. Sinauer Associates, Sunderland, MA.
  44. Varma, A. and A. Jain. 2021. Taxonomy, morphology, and life cycle of quinoa. pp. 17-33. In: Varma, A. (ed.). Biology and biotechnology of quinoa. Springer, Singapore. Doi: https://doi.org/10.1007/978-981-16-3832-9_2
  45. Veloza, C., G. Romero-Guerrero, and J.J. Gómez-Piedras. 2016. Respuesta morfoagronómica y calidad en proteína de tres accesiones de quinua (Chenopodium quinoa Willd.) en la sabana norte de Bogotá. Rev. U.D.C.A Act. Div. Cient. 19(2), 325-332. Doi: https://doi.org/10.31910/rudca.v19.n2.2016.86
  46. Yuan, Z., Q. Cao, K. Zhang, S.T. Ata-Ul-Karim, Y. Tian, Y. Zhu, W. Cao, and X. Liu. 2016. Optimal leaf positions for SPAD meter measurement in rice. Front. Plant Sci. 7, 719. Doi: https://doi.org/10.3389/fpls.2016.00719

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.