Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Mecanismos de adaptación a sequía en caupí (Vigna unguiculata (L.) Walp.). Una revisión

Resumen

Este artículo presenta una revisión de los mecanismos de adaptación a sequía observados en fríjol caupí, mostrando las respuestas morfológicas, las relaciones hídricas e intercambio gaseoso, el ajuste osmótico, el sistema antioxidante y la actividad molecular. Se describen algunos indicadores que permiten la aproximación a un diagnóstico del nivel de estrés de las plantas tales como la relación raíz/parte aérea, densidad y profundidad de raíces, materia seca radical, área foliar específica, número de hojas y flores, senescencia foliar y abscisión foliar, componentes del rendimiento, conductancia estomática, transpiración, eficiencia en el uso del agua, contenido de osmolitos: prolina, glicina betaína y azucares, actividad de enzimas antioxidantes involucradas en procesos de detoxificación de las especies reactivas de oxígeno: catalasa, ascorbato peroxidasa, superóxido dismutasa y glutatión reductasa, así como la visualización de la frontera del conocimiento en este aspecto de gran importancia para el mejoramiento de la especie y los avances en biología molecular.

PDF

Citas

  1. Abass, S.M. y H.I. Mohamed. 2011. Alleviation of adverse effects of drought stress on common bean (Phaseolus vulgaris L.) by exogenous application of hydrogen peroxide. Bangladesh J. Bot. 41(1), 75-83.
  2. Abayome, Y.A. y T.O. Abidoye. 2009. Evaluation of cowpea genotypes for soil moisture stress tolerance under screen house conditions. African J. Plant Sci. 3 (10), 229-237.
  3. Agbicodo, E.M., C.A. Fatokun, S. Muranaka, R.G.F. Visser y C.G. Linden Van Der. 2009. Breeding drought tolerant cowpea: constraints, accomplishments, and future prospects. Euphytica 167, 353-370.
  4. Ahmed, F.E. y A.S.H. Suliman. 2010. Effect of water stress applied at different stages of growth on seed yield and water-use efficiency of cowpea. Agric. Biol. J. N. Am. 1(4), 534-540.
  5. Ansari, M.I. y T.P. Lin. 2010. Molecular Analysis of Dehydration in Plants. Intl. Res. J. Plant Sci. 1(2), 21-25.
  6. Anyia, A.O. y H. Herzog. 2004. Genotypic variability in drought performance and recovery in cowpea under controlled environment. J. Agron. Crop Sci. 190 (2), 151-159.
  7. Bates, L.M. y A.E. Hall. 1981. Stomatal closure with soil water depletion not associated with changes in bulk leaf water status. Oecologia. 50, 62-65.
  8. Beebe, S.E., I.M. Rao, M.W. Blair y J.A. Acosta-Gallego. 2013. Phenotyping common beans for adaptation to drought. Front. Physiol. 4, 35.
  9. Belko, N., M. Zaman-Allah, N. Cisse, N.N. Diop, G. Zombre, J.D. Ehlers y V. Vadez. 2012. Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought-tolerant cowpea. Funct. Plant Biol. 39(4), 306-322.
  10. Ben-Haj-Salah, H. y F. Tardieu. 1997. Control of leaf expansion rate of droughted maize plants under fluctuating evaporative demand. A superposition of hydraulic and chemical messages? Plant Physiol. 114, 893-900.
  11. Blum, A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop. Res. 112 (2009), 119- 123.
  12. Boyer, J.S. 1978. Chapter 4: Water deficits and photosynthesis. pp. 154-191. En: Kozlowski, T. T. (ed.). Water deficits and plant growth. Academic Press, N.Y.
  13. Condon, A.G., R.A Richards, G.J. Rebetzke y G. D. Farquhar. 2004. Breeding for high water-use efficiency. J. Exp. Bot. 55 (407), 2447-2460.
  14. Costa, R.C.L., A.K.S. Lobato, C.F. Oliveira Neto, P.S.P. Maia, G.A.R. Alves y H.D. Laughinghouse. 2008. Biochemical and physiological responses in two Vigna unguiculata (L.) Walp. Cultivars under water stress. J. Agron. 7, 98-101.
  15. Cruz de Carvalho M.H., D. Laffray y P. Louguet. 1998. Comparison of the physiological responses of Phaseolus vulgaris and Vigna unguiculata cultivars when submitted to drought conditions. Environ. Exp. Bot. 40,197-207.
  16. Cruz de Carvalho, M.H., H. Brunet, I. Kranner, A.D. Arcy-Lammeta, Y. Zuily-Fodil y D. Cantour-Ansel. 2010. Homoglutathione synthetase and glutathione synthetase in drought-stressed cowpea leaves: Expression patterns and accumulation of low-molecular-weight thiols. J. Plant Physiol. 167,480-487.
  17. Cushman, J.C. 2001. Osmoregulation in plants: implications for agriculture. Am. Zool. 4, 758-769.
  18. Dadson, R.B., F.M. Hashem, I. Javaid, J. Joshi, A.L. Allen y T.E. Devine. 2005. Effect of water stress on the yield of cowpea (Vigna unguiculata L. Walp.) genotypes in the Delmarva region of the United States. J. Agron. Crop Sci. 191, 210-217.
  19. DoNascimento, S.P. 2009. Efeito do deficit hídrico em feijão-caupi para entificação genótipos com tolerância à seca. Tesis de mestre em agronomía. Agricultural Science Center, Universidad Federal do Piauí, Teresina, Brasil.
  20. Farouk, S. y A.R. Amany. 2012. Improving growth and yield of cowpea by foliar application of chitosan under water stress. Egypt. J. Biol. 14, 14-26.
  21. Flexas, J., J. Bota, J. Galmés, H. Medrano y M. Ribas- Carbó. 2006. Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol. Plant. 127(3), 343-352.
  22. Ganal, M.W., T. Altman y M.S. Roder. 2009. SNP identification in crop plants. Curr. Opin. Plant Biol.12, 211-217.
  23. González-Rodríguez, H., I. Cantú-Silva, R.G. Ramírez- Lozano, M.V. Gómez-Meza, M. Pando-Moreno y J.M. López-Hernández. 2011. Potencial hídrico xilemático en cuatro especies arbustivas nativas del noreste de México. Revista Chapingo Serie Ciencias Forestales y del Ambiente 17, 97-109.
  24. Grativol, C., A.S. Hemerly y P.C.G Gomes Ferreira. 2012. Genetic and epigenetic regulation of stress responses in natural plant populations. Biochim. Biophys. Acta 1819, 176-185
  25. Hall, A. 2004. Breeding for adaptation to drought and heat in cowpea. Europ. J. Agron. 21, 447-454.
  26. Hall, A.E.; N. Cisse, S. Thiaw, H.O.A Elawad, J.D. Ehlers, A.M. Ismail, R. Fery, P.A. Roberts, L.W. Kitch, L.L. Murdock, O. Boukar, R.D. Phillips y K.H Mcwatters. 2003. Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP. Field Crop Res. 82, 103-134.
  27. Hamidou, F., G. Zombre, O. Diouf, N. Diop, S. Guinko, and S. Braconnier. 2007. Physiological, biochemical and agromorphological responses of five cowpea genotypes (Vigna unguiculata (L.) Walp.) to water deficit under glasshouse conditions. Biotechnol. Agron. Soc. Environ. 11(3), 225-234.
  28. Huynh, B-L., T.J. Close, P.A. Roberts, Z. Hu, S. Wanamaker, R.M.R Mitchell R. Chiulele, N. Cissé, A. David, S. Hearne, C. Fatokun, N.N. Diop y J.D. Ehlersthe. 2013. Gene pools and the genetic architecture of domesticated cowpea. Plant Genet. 6(2), 1-8.
  29. Ichi, J.O., H.E. Igbadun, S. Miko and A.M. Samndi. 2013. Growth and yield response of selected cowpea (Vigna unguiculata L. Walp.) variety to irrigation interval and sowing date. The Pacific J. Sci. Techn. 14 (1), 453-463.
  30. Ishiyaku, M.F. and H. Aliyu. 2013. field evaluation of cowpea genotypes for drought tolerance and Striga resistance in the dry savanna of the North-West Nigeria. Int. J. Plant Breed. Genet. 7(1), 47-56. [
  31. Kavi-Kishor, P.B., Z. Hong, G.H. Miao, C.A.A Hu y D.P.S. Verma. 1995. Overexpression of D1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108, 1387-1394.
  32. Kozlowski, T.T. y S.G. Pallardy . 1997. Physiology of woody plants. 2nd ed. Academic Press. Academic Press. San Diego, CA. pp. 147-153.
  33. Kumar, A., K.D. Sharma y D. Kumar. 2008. Traits for screening and selection of cowpea genotypes for drought tolerance at early stages of breeding. J. Agric. Rur. Develop. Trop. Subtrop. 109(2), 191-199.
  34. Lawlor, D.W. y G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 25, 275-294.
  35. Lobato, A.K.S., C.F. Oliveira Neto, R.C.L. Costa, B.G. Santos-Filho, F.J.R. Cruz y H.D. Laughinghouse. 2008. Biochemical and physiological behavior of Vigna unguiculata (L.) Walp. under water stress during the vegetative phase. Asian J. Plant Sci. 7, 44-49.
  36. Lobato, A.K.S, R.C.L. Costa, C.F.O. Neto, B.G.S. Filho, G.A.R. Alves, J.M.N. Freitas, F.J.R. Cruz, C.A. Marochio y G.K. Coimbra. 2009. Responses of the pigments and carbon metabolism in Vigna unguiculata cultivars submitted to water deficit. Res. J. Biol. Sci. 4, 593-598.
  37. Martinazzo, E.G., A.T. Perboni, P.V. Deoliveira, V.J. Bianchi y M.A. Bacarin. 2013. Photosynthetic activity in Japanese plum under water deficit and flooding. Ciência Rural 43(1), 35-41.
  38. Matos, A.R., Gigon, A. Laffray, D. Pêtres, S. Zuily-Fodil y A.T. Pham-Thi. 2008. Effects of progressive drought stress on the expression of patatin-like lipid acyl hydrolase genes in Arabidopsis leaves. Physiol. Plant. 134(1), 110-120.
  39. Matsui, T. y B. Singh. 2003. Root characteristics in cowpea related to drought tolerance at the seedling stage. Exp. Agric. 29, 29-38.
  40. Moreno, L.P. 2009. Respuesta de las plantas al estrés por déficit hídrico. Una revisión. Agron. Colomb. 27(2), 179-191.
  41. Muchero, W., J.D. Ehlers y P.A. Roberts. 2008. Seedling stage drought-induced phenotypes and droughtresponsive genes in diverse cowpea genotypes. Crop Sci. 48, 541-552.
  42. Muchero, W., J.D. Ehlers, T. Close y P. Roberts. 2009. Mapping QTL for drought stress-induced premature senescence and maturity in cowpea (Vigna unguiculata (L.) Walp.). Theor. Appl. Genet. 118, 849-863.
  43. Muchero, W., J.D. Ehlers y P.A. Roberts. 2010. Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea Vigna unguiculata (L.) Walp. Theor. Appl. Genet. 120, 509-518.
  44. Muchero, W., P.A. Roberts, N.N. Diop, I. Drabo, N. Cisse, T.J. Close, S. Muranka, O. Boukar y J.D. Ehlers. 2013. Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea. PloS ONE 8(7), e70041.
  45. Nelson, C., M. Rosegrant, J. Koo, R. Robertson, T. Sulser, T. Zhu, C. Ringler, S. Msangi, A. Palazo, M. Batka, M. Magalhaes, R. Valmonte-santos, M. Ewing y D. Lee. 2009. Cambio climático: el impacto en la agricultura y los costos de adaptación. Instituto Internacional de Investigación sobre Políticas Alimentarias IPFRI. En: http://www.fao.org; consulta: agosto de 2010.
  46. Okon, I.E. 2013. Effect of water stress on some growth aspect of two varieties of cowpea, Vigna unguiculata L. Walp. Fabaceae. Bullet. Environ. Pharmacol. Life Sci. 2(5), 69-74.
  47. Oliveira, A. D., E.J. Fernandes y T.J.D. Rodrigues. 2005. Condutância estomática como indicador de estresse hídrico em Feijão. Engenharia Agrícola 25(1), 86-95.
  48. Parry, M.A.J., J. Flexas y H. Medrano. 2005. Prospects for crop production under drought: research priorities and future directions. Ann. Appl. Biol. 147, 211-226.
  49. Patil, D.M., N.B. Sawardekar, S.G. Gokhale, S.S. Bhave, S.A. Sawant, K.A. Sawantdesai, S.N. Lipne, S.N Sabale y S.N. Joshi. 2013. Genetic diversity analysis in cowpea (Vigna unguiculata L. Walp.) by using RAPD markers. Intl. J. Innov. Biotechnol. Biochem. 1(1), 15-23.
  50. Polanía, J.A., I.M. Rao, S. Mejía, S.E. Beebe y C. Cajiao. 2012. Características morfo-fisiológicas del fríjol común (Phaseolus vulgaris L.) relacionadas con la adaptación a sequía. Acta Agron. 61(3), 197-206.
  51. Pompelli, M., R. Barata, H. Vitorino, E. Gonçalves, E. Rolim, M. Santos, J. Almeida, V. Ferreira, E. Lemos y L. Endres. 2010. Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery. Biom. Bioenergy 34 (8), 1207-1215.
  52. Pungulani, L.L.M., J.P Millner, W.M. Williams y M. Banda. 2013. Improvent of leaf wilting scoring in cowpea (Vigna Sinensis (L.) Walp.): From qualitative scale to quantitative index. Aust. J. Crop Sci. 7 (9), 1262-1269.
  53. Qasem, J.R. y K.N. Biftu. 2010. Growth analysis and responses of cowpea (Vigna Sinensis (L.) Savi ExHassk. and redroot pigweed (Amaranthus retroflexus L.), grown in pure and mixed stands, to density and water stresses. The Open Hortic. J. 2010(3), 21-30.
  54. Reis, G.G. y A.E. Hall. 1987. Relações hídricas e atividade do sistema radicular em Eucalyptus camaldulensis Dehn. em condições de campo. Revista Árvore 11(1), 43-55.
  55. Rodríguez, L. 2006. Implicaciones fisiológicas de la osmorregulación en plantas. Agron. Colomb. 24(1), 28-37.
  56. Sellin A. 1999. Does pre-dawn water potential reflect conditions of equilibrium in plants and soil water status? Acta Oecol. 20 (1), 51-59.
  57. Singh, S.K. y K.R. Reddy. 2011. Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata (L.) Walp.) under drought. J. Photochem. Photobiol. B: Biol. 105, 40-50.
  58. Subudhi, P.K., D.T. Rosenow y H.T. Nguyen. 2000. Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor. Appl. Genetics. 101,733-741.
  59. Taiz, L. y E. Zeiger. 2010. Plant physiology. 5th ed. Sinauer Associates, Inc. Redwood City, CA. pp. 644-645.
  60. Tan, H., M. Tie, Q. Luo, Y. Zhu, J. Lai y H. Li. 2012. A review of molecular markers applied in cowpea (Vigna unguiculata L. Walp.) breeding J. Life Sci. 6, 1190-1199.
  61. Tan, H., H. Huang, M. Tie, J. Ma y H. Li. 2013. Comparative analysis of six DNA extraction methods in cowpea (Vigna unguiculata L. Walp). J. Agr. Sci. 5(7), 82-90.
  62. Tardieu, F. y T. Simonneau. 1998. Variability of species among stomatal control under fluctuating soil water status and evaporative demand: modeling isohydric and anisohydric behaviours. J. Exp. Bot. 49, 419-432.
  63. Tausz M., H.S. Ircelj and D. Grill. 2004. The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J. Exp. Bot. 55 (404), 1955-1962.
  64. Timko, M.P., P.J. Rushton, T.W. Laudeman, M.T. Bokowiec, E. Chipumuro, F. Cheung, C.D. Town y X. Chen. 2008. Sequencing and analysis of the generich space of cowpea. BMC Genomics 9, 103.
  65. Torres-Franklin, M.L, D. Contour-Ansel, Y. Zuily-Fodil y A.T. Pham-Thi. 2008. Molecular cloning of glutathione reductase cDNAs and analysis of GRgene expression in cowpea and common bean leaves during recovery from a moderate drought stress. J. Plant Physiol. 165, 514-21.
  66. Torres-Franklin, M.L., A. Repellina, V.B. Huynh, A.D. Arcy-Lammeta, Y. Zully-Fodil y T. Pham-Thia. 2009. Omega-3 fatty acid desaturase (FAD3, FAD7, FAD8) gene expression and linolenic acid content in cowpea leaves submitted to drought and after rehydration. Environ. Exp. Bot. 65, 162-169.
  67. Van Duivenbooden, N., S. Abdoussalam y A.B. Mohamed. 2002. Impact of climate change on agricultural production in the Sahel-Part 2.Case study for groundnut and cowpea in Niger. Climatic Change 54(3), 349-368.
  68. Wahid, A., S. Gelani, M. Ashraf y M.R. Foolad. 2007. Heat tolerance in plants: An overview. Environ. Exp. Bot. 61(3), 199-223.
  69. Watanabe, I., I. Tsukuba y T. Terao. 1998. Drought tolerance of cowpea (Vigna unguiculata (L.) Walp.), 2: Field trial in the dry season of Sudan savanna and dry matter production of potted plants under water-stress. J. Int. Res. Cent. Agr. Sci. 6, 29-37.
  70. Zhang S.Q. y W.H. Outlaw. 2001. Abscisic acid introduced into the transpiration stream accumulates in the guard cell apoplasto and causes stomatal closure. Plant Cell Environ. 24, 1045-1054.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a