Gasification of coal, Chenopodium Album biomass, and co-gasification of a coal-biomass mixture by thermogravimetric-gas analysis




agglomerated mixtures, chenopodium album, coal-biomass, co-gasification, synergy, syngas


Gasification studies were performed on sub-bituminous coal of the province Centro in Boyacá state of Colombia, vegetable biomass Chenopodium album (cenizo) and co-gasification of coal-biomass mixtures agglomerated with paraffin in a thermogravimetric analyzer. Biomass synergistically promoted thermochemical transformation of the coal was observed. Experimental results were compared to equilibrium composition simulations. Ash fusibility tests of the coal-biomass mixture were carried out, which allowed to clarify its behavior, such as dry or fluid ash according to own chemical composition, during the gasification process. The experimental tests allowed determining the differences in thermal decomposition, between coal, cenizo and coal-biomass blend, which are attributable to the physicochemical properties of each one solid fuel. During the tests, gas chromatography analyses were performed to establish the compositions of the syngas. The syngas obtained from biomass had the highest concentration of CO and the lowest H2; the coal and the coal-biomass mixture were slightly minor respectively. Concentrations of CH4, CO2 and C2H4 were similar between coal and biomass. This result is consistent with the higher calorific value of the coal syngas. The production of syngas from the coal-biomass mixture had the lowest contents of H2 and CO due to synergistic phenomena that occur with the fuel mixture. The co-gasification of the mixture gave the highest syngas production, carbon conversion, and thermal efficiency. These results indicate the viability of co-gasification of coal-Chenopodium album agglomerated mixtures. In gasification of non-agglomerated mixtures of coal-cenizo, the biomass can be burned directly without producing syngas.


Download data is not yet available.


[1] D. Ayhan, “Sustainable cofiring of biomass with coal,” Energy Convers. Manag., vol. 44 (9), pp. 1465-1479, 2003.

[2] P. Correa, “Colombia Reducirá en un 20% sus emisiones de CO2,” El Espectador, p. 12, Sep. 2015.

[3] A. Demirbaş, “Global renewable energy resources,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 28 (8), pp. 779-792, 2006.

[4] S. Adhikari, S. Fernando, S. R. Gwaltney, S. D. Filip To, R. M. Bricka, P. H. Steele, and A. Haryanto, “A thermodynamic analysis of hydrogen production by steam reforming of glycerol,” Int. J. Hydrogen Energy, vol. 32 (14), pp. 2875-2880, Sep. 2007.

[5] D. Tillman, D. Duong, and N. S. Harding, Solid Fuel Blending: principles, practices and problems. Oxford - Reino Unido: Butterworth-Heinemann, p. 337, 2012.

[6] J. J. Battista Jr., E. E. Hughes, and D. A. Tillman, “Biomass cofiring at Seward Station. (Cofiring benefits for coal and biomass),” Biomass and Bioenergy, vol. 19, pp. 419-427, Dec. 2000.

[7] D. Mallick, P. Mahanta, and V. S. Moholkar, “Co-gasification of coal and biomass blends: Chemistry and engineering,” Fuel, vol. 204, pp. 106-128, Sep. 2017.

[8] J. Rezaiyan, and N. Cheremisinoff, Gasification Technologies: A primer for Engineers and Scientists. Boca Ratón - Florida: VRC Taylor and Francis Group, 2005.

[9] P. N. Sheth, and B. V. Babu, “Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier,” Bioresour. Technol., vol. 100 (12), pp. 3127-3133, 2009.

[10] D. A. Bell, B. F. Towler, and M. Fan, Coal Gasification and Its Utilization, vol. I. Elsevier, Butterworth-Heinemann, 2011.

[11] L. Emami-Taba, M. F. Irfan, W. M. A. Wan Daud, and M. H. Chakrabarti, “Fuel blending effects on the co-gasification of coal and biomass - A review,” Biomass and Bioenergy, vol. 57, pp. 249-263, 2013.

[12] L. . T. Faccini, and D. Nisensohn, Manual de reconocimiento y manejo de malezas. Corpscience Bayer, Rosario - Argentina, p. 100, 2012.

[13] J. Holm, L. Plucknett, D. Pancho, and L. Herberger, The world’s worst weeds. Honolulu - Hawaii: University Press, 1977.

[14] M. Coquillat, Sur les plantes les plus communes a la surface du globe. Lyon - France: Société linnéenne de Lyon, pp. 165–170, 1951.

[15] A. Poonia, and A. Upadhayay, “Chenopodium album Linn : review of nutritive value and biological properties,” vol. 52, pp. 3977-3985, Jul. 2015.

[16] R. Xu, B. Dai, W. Wang, J. Schenk, and Z. Xue, “Effect of iron ore type on the thermal behaviour and kinetics of coal-iron ore briquettes during coking,” Fuel Process. Technol., vol. 173, pp. 11-20, Oct. 2018.

[17] G. R. Kale, B. D. Kulkarni, and R. N. Chavan, “Combined gasification of lignite coal: Thermodynamic and application study,” J. Taiwan Inst. Chem. Eng., vol. 45 (1), pp. 163-173, 2014.

[18] C. F. Valdés, G. Marrugo, F. Chejne, J. D. Román, and J. I. Montoya, “Effect of atmosphere reaction and heating rate on the devolatilization of a Colombian sub-bituminous coal,” J. Anal. Appl. Pyrolysis, vol. 121, pp. 93-101, 2016.

[19] R. G. M. Desamparados, Caracterización fundamental de ensayos termogravimétricos - Video. Valencia, España: Universidad Politécnica de Valencia, 2014.

[20] C. F. Valdés, G. Marrugo, F. Chejne, J. I. Montoya, and C. A. Gómez, “Pilot-Scale Fluidized-Bed Co-gasification of Palm Kernel Shell with Sub-bituminous Coal,” Energy and Fuels, vol. 29 (9), pp. 5894-5901, 2015.

[21] S. V Vassilev, K. Kitano, S. Takeda, and T. Tsurue, “Influence of mineral and chemical-composition of coal ashes on their fusibility,” Fuel Process. Technol., vol. 45 (95), pp. 27-51, 1995.

[22] B. C. Young, M. D. Mann, and M. E. Collings, “Formation of NOx and N2O in the fluidized-bed combustion of high- and low-rank coals,” Coal Sci. Technol., vol. 21, pp. 419-436, 1993.

[23] K. D. R. Vanderlans, P. Glarborg, “Influence of process parameters on nitrogen oxide formation in pulverized coal burners,” Energy Combust., vol. 23, pp. 349-377, 1997.

[24] P. Glarborg, J. A. Miller, B. Ruscic, and S. J. Klippenstein, “Modeling nitrogen chemistry in combustion,” Prog. Energy Combust. Sci., vol. 67, pp. 31-68, 2018.

[25] K. Qin, “Entrained Flow Gasification of Biomass," Doctoral Thesis, Technical University of Denmark, Denmark, pp. 16-39, 2012.

[26] A. Cerquera, C. Rodriguez, and D. Ruano, “Análisis mineralógico, químico y porosimétrico de los agregados pétreos de una cantera perteneciente a la formación geológica de la sabána en el municipio de Soacha-Cundinamarca,” Thesis Grade, Universidad Católica de Colombia, Bogotá D.C., Colombia, 2017.

[27] G. Zhang, J. T. Germaine, R. T. Martin, and A. J. Whittle, “A simple sample-mounting method for random powder X-ray diffraction,” Clays Clay Miner., vol. 51 (2), pp. 218-225, 2003.

[28] A. Haryanto, S. D. Fernando, L. O. Pordesimo, and S. Adhikari, “Upgrading of syngas derived from biomass gasification: A thermodynamic analysis,” Biomass and Bioenergy, vol. 33 (5), pp. 882-889, 2009.

[29] I. N. Levine, Fisicoquímica Vol. 1, Madrid-Spain: Mc Graw Hill, 2004.

[30] K. Kumabe, T. Hanaoka, S. Fujimoto, T. Minowa, and K. Sakanishi, “Co-gasification of woody biomass and coal with air and steam,” Fuel, vol. 86 (5-6), pp. 684-689, 2007.

[31] A. Żogała, “Equilibrium Simulations of Coal Gasification – Factors Affecting Syngas Composition,” J. Sustain. Min., vol. 13 (2), pp. 30-38, 2014.

[32] R. J. De Armas, D. Macías M., and A. C. Amed A., “Modelamiento y Simulación con Matlab,” 2000. Available at:

[33] M. A. Lara et al., “Thermodynamic simulation of reduction of mixtures of iron ore, siderurgical wastes and coal,” Metalurgija, vol. 58 (1), pp. 11-14, 2019.

[34] Z. Ma, D. Chen, J. Gu, B. Bao, and Q. Zhang, “Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods,” Energy Convers. Manag., vol. 89, pp. 251-259, 2015.

[35] L. Burhenne, J. Messmer, T. Aicher, and M. P. Laborie, “The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 101, pp. 177-184, 2013.

[36] A. Gani and I. Naruse, “Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass,” Renew. Energy, vol. 32 (4), pp. 649-661, 2007.

[37] P. R. Solomon, “Coal Structure and Thermal Decomposition. In New Approaches in Coal Chemistry,” ACS - Washington, D. C., vol. 169, pp. 61-71, 1981.

[38] A. Molina, and C. R. Shaddix, “Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion,” Proc. Combust. Inst., vol. 31, pp. 1905-1912, 2007.

[39] J. F. Vélez, F. Chejne, C. F. Valdés, E. J. Emery, and C. A. Londoño, “Co-gasification of Colombian coal and biomass in fluidized bed: An experimental study,” Fuel, vol. 88 (3), pp. 424-430, 2009.

[40] M. S. Masnadi-Shirazi, “Biomass/fossil fuel co-gasification with and without integrated CO2 capture,” Doctoral Thesis, University of British Columbia, Vancouver, Canada, 2014.

[41] G. Marrugo, C. F. Valdés, and F. Chejne, “Characterization of Colombian Agroindustrial Biomass Residues as Energy Resources,” Energy and Fuels, vol. 30 (10), pp. 8386-8398, 2016.

[42] M. Wang, L., Hustad, J.E., Skreiberg, Ø., Skjevrak, and G., Grønli, “A Critical Review on Additives to Reduce Ash Related Operation Problems in Biomass Combustion Applications.,” Energy Procedia, vol. 20, pp. 20-29, 2012.

[43] T. C. Drage, C. H. Vane, and G. D. Abbott, “The closed system pyrolysis of β-O-4 lignin substructure model compounds,” Org. Geochem., vol. 33 (12), pp. 1523-1531, 2002.

[44] P. R. Solomon, D. G. Hamblen, R. M. Carangelo, M. A. Serio, and G. V. Deshpande, “General model of coal devolatilization,” Energy & Fuels, vol. 2, pp. 405-422, May. 2002.

[45] G. Marrugo, “Efecto de los cambios estructurales de diferentes biomasas pirolizadas sobre las características del gas de síntesis, obtenido a partir de la gasificación de biochar,” Master Thesis, Universidad Nacional de Colombia, Bogotá D.C., Colombia, 2015.

[46] C. L. Lin, and W. C. Weng, “Effects of different operating parameters on the syngas composition in a two-stage gasification process,” Renew. Energy, vol. 109, pp. 135-143, 2017.

[47] O. A. Oyelaran, F. M. Sani, O. M. Sanusi, O. Balogun, and A. O. Fagbemigun, “Energy Potentials of Briquette Produced from Tannery Solid Waste,” Makara J. Technol., vol. 21 (3), p. 122, 2018.

[48] A. A. Bhuiyan, A. S. Blicblau, A. K. M. S. Islam, and J. Naser, “A review on thermo-chemical characteristics of coal/biomass co-firing in industrial furnace,” J. Energy Inst., vol. 91 (1), pp. 1-18, 2018.

[49] P. Glarborg, “Fuel nitrogen conversion in solid fuel fired systems,” Energy Combust, vol. 29, pp. 89-113, 2003.

[50] C. F. Valdés, F. Chejne, G. Marrugo, R. J. Macias, C. A. Gómez, J. I. Montoya, C. A.Londoño, J. De La Cruz, and E. Arenas, “Co-gasification of sub-bituminous coal with palm kernel shell in fluidized bed coupled to a ceramic industry process,” Appl. Therm. Eng., vol. 107, pp. 1201-1209, 2016.

[51] S. Usón, A. Valero, L. Correas, and Á. Martínez, “Co-gasification of coal and biomass in an IGCC power plant: Gasifier modeling,” Int. J. Thermodyn., vol. 7 (4), pp. 165-172, 2004.

[52] M.R. Riazi; and R. Gupta, Coal production and processing technology. Boca Raton-Florida: CRC Press, 2016.

[53] Y. Ninomiya, and A. Sato, “Ash melting behavior under coal gasification conditions,” Energy convers, vol. 38 (10), pp. 1405-1412, 1997.

[54] X. Wu, Z. Zhang, G. Piao, X. He, Y. Chen, N. Kobayashi, S. Mori, and Y. Itaya, “Behavior of mineral matters in chinese coal ash melting during char-CO 2/H2O gasification reaction,” Energy and Fuels, vol. 23 (5), pp. 2420-2428, 2009.

[55] X. Wu, Z. Zhang, Y. Chen, T. Zhou, J. Fan, G. Piao, N. Kobayashi, S. Mori, and Y.Itaya, “Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition,” Fuel Process. Technol., vol. 91 (11), pp. 1591-1600, 2010.

[56] L. L. Baxter, L.L., Miles, T.R., Miles, T.R., Jenkins, B.M., Milne, T., Dayton, D., Bryers, R.W., Oden, “The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences.,” Fuel Process, vol. 5, pp. 47-78, 1998.

[57] P. Johansen, J.M. Aho, M. Paakkinen, K. Taipale, R. Egsgaard, H. Jakobsen, J.G. Frandsen, and F.J. Glarborg, “Release of K, Cl, and S during combustion and co-combustion with wood of high-chlorine biomass in bench and pilot scale fuel beds,” Release K, Cl, S Dur. Combust. co-combustion with wood high-chlorine biomass bench Pilot scale fuel beds., vol. Proc. Comb, pp. 2363-2372, 2013.

[58] Z. Werther, J., Saenger, M., Hartge, E.-U., Ogada, T., Siagi, “Combustion of agricultural residues.,” Energy Combust., vol. 26, pp. 1-27, 2000.




How to Cite

Ardila-Barragán, M. A., Valdés-Rentería, C. F., Pecha, B., López-Díaz, A., Gil-Lancheros, E., Vanegas-Chamorro, M. C., Camporredondo-Saucedo, J. E., & Lozano-Gómez, L. F. (2019). Gasification of coal, Chenopodium Album biomass, and co-gasification of a coal-biomass mixture by thermogravimetric-gas analysis. Revista Facultad De Ingeniería, 28(53), 53–77.




Most read articles by the same author(s)