Skip to main navigation menu Skip to main content Skip to site footer

Prediction of Electricity Consumption Profiles Using Potential Polynomials of Degree One and Artificial Neural Networks in Smart Metering Infrastructure

Abstract

This work analyzes methods and algorithms for predicting the behavior of electricity consumption based on neural networks using data obtained from the Advanced Measurement Infrastructure (AMI) of an educational institution. Also, a contrast between the use of conventional neural networks (ANN), wavelet-based neural networks (WNN) and potential polynomials of degree one (P1P) has been performed. The correlation of each prediction method is analyzed, as well as the behavior of the Mean Square Error (MSE), to finally establish if there is an imbalance in the computational cost through the Big-O analysis and the executing time. The quantitative results of the MSE are below 0.05% for ANN predictions and they use a high computational cost. For P1P, errors around 1.2% are presented, showing as a low computational consumption prediction method but mainly applicable for a short-term analysis. This work is given in response to the need to establish a platform to take advantage of the smart metering structure through the prediction of electricity consumption profile, with the objective of developing a plan for maintenance and management of electricity demand to reduce operating costs from the final consumer to the distribution network operator. For the analysis of projections on the electrical load profile, the statistical characteristics of the consumption are considered to select the prediction algorithms according to the number of days to be projected using data from any of the smart meters, which can be monitored in an electrical network oriented to Smart Grids.

Keywords

AMI, electricity consumption prediction, P1P, smart metering, WNN

PDF XML

Author Biography

Pablo Urgilés

Roles: Research, Methodology, Experimental Design, Writing - original draft, Data curation.

Juan Inga-Ortega

Roles: Supervision, Experimental Design, Data curation, Writing - original draft.

Arturo Peralta

Roles: Methodology, Experimental Design, Validation, Writing - revision and editing.

Andrés Ortega

Roles: Methodology, Validation, Writing - revision and editing.


References

  1. A. M. Lastre Aleaga, E. F. Méndez Garcés, A. Cordovés García, “Sistema automatizado para la predicción de flujo de carga en subestaciones eléctricas mediante redes neuronales artificiales,” Enfoque UTE, vol. 6, no. 3, pp. 20–35, 2015. https://doi.org/10.29019/enfoqueute.v6n3.66 DOI: https://doi.org/10.29019/enfoqueute.v6n3.66
  2. B. Shahid, Z. Ahmed, A. Faroqi, R. M. Navid-ur-Rehman, “Implementation of smart system based on smart grid smart meter and smart appliances,” in Smart Grids Iranian Conference (ICSG 2012), 2012, pp. 278.
  3. J. Inga, E. Inga, C. Gómez, R. Hincapié, “Evaluación de la Infraestructura de Medición y la Respuesta de la Demanda,” Revista Técnica “energía”, vol. 12, no. 1, 2016, pp. 262-269. https://doi.org/10.37116/revistaenergia.v12.n1.2016.51 DOI: https://doi.org/10.37116/revistaenergia.v12.n1.2016.51
  4. J. Zheng, D. W. Gao, L. Lin, “Smart meters in smart grid: An overview,” in IEEE Green Technology Conference, 2013, pp. 57–64. https://doi.org/10.1109/GreenTech.2013.17 DOI: https://doi.org/10.1109/GreenTech.2013.17
  5. P. L. Hernández, J. Montes De Oca, M. Carro, S. J. Fernández, “Optimización del mantenimiento preventivo, utilizando las técnicas de diagnóstico integral. Resultados finales y evaluación económica,” Ingeniería Energética, vol. XXIX, no. 2, pp. 14–25, 2008.
  6. O. A. Alsayegh, “Annual energy consumption prediction using particle filters,” in Proceedings Seventh International Symposium on Signal Processing and Its Applications, pp. 571–574, 2003. https://doi.org/10.1109/ISSPA.2003.1224941 DOI: https://doi.org/10.1109/ISSPA.2003.1224941
  7. H. H. Chang, W. Y. Chiu, T. Y. Hsieh, “Multipoint fuzzy prediction for load forecasting in green buildings,” in 16th International Conference on Control, Automation and Systems (ICCAS), 2016, pp. 562–567. https://doi.org/10.1109/ICCAS.2016.7832375 DOI: https://doi.org/10.1109/ICCAS.2016.7832375
  8. C. A. Pérez Rivera, J. A. Britto Montoya, G. A. Isaza Echeverry, “Aplicación de redes neuronales para la detección de intrusos en redes y sistemas de información,” Scientia et Technica, vol. 11, no. 27, pp. 225–230, 2005.
  9. B. M. del Brío, C. Serrano Cinca, “Fundamentos de las redes neuronales artificiales: hardware y software,” Scire Representación y Organización del Conocimiento, vol. 1, no. 1, pp. 103–125, 1995. DOI: https://doi.org/10.54886/scire.v1i1.1036
  10. P. Marquez, D. Pinos, I.-O. Juan, “Performance comparison in network traffic prediction for polynomial regression to P1P versus ARIMA and MWM,” in IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2018, pp. 77–82. https://doi.org/10.1109/EIConRus.2018.8317034 DOI: https://doi.org/10.1109/EIConRus.2018.8317034
  11. J. W. H. Shi, J. Yang, M. Ding, “A short-term wind power prediction method based on wavelet decomposition and bp neural network,” Automation of Electric Power Systems, vol. 35, no. 16, pp. 44–48, 2011.
  12. N. M. Pindoriya, S. N. Singh, S. K. Singh, “An adaptive wavelet neural network-based energy price forecasting in electricity markets,” IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 14–23, 2008. https://doi.org/10.1109/TPWRS.2008.922251 DOI: https://doi.org/10.1109/TPWRS.2008.922251
  13. Y. Sun, N. Zhang, X. Lu, H. Yang, and Z. Yue, “Power consumption prediction of submerged arc furnace based on multi-input layer wavelet neural network,” in International Conference on Mechanic Automation and Control Engineering, 2010, pp. 3586–3589. https://doi.org/10.1109/MACE.2010.5535410 DOI: https://doi.org/10.1109/MACE.2010.5535410
  14. D. Pinos-Mendez, J. Inga, “Compressed Sensing and P1P in Electrical Consumption Prediction,” in International Conference on Information Systems and Computer Science (INCISCOS), 2018, pp. 158–164. https://doi.org/10.1109/INCISCOS.2018.00030 DOI: https://doi.org/10.1109/INCISCOS.2018.00030
  15. M. F. Bouami, Desarrollo y optimización de nuevos modelos de redes neuronales basadas en funciones de base radial, Master Thesis, Universidad de Granada, Spain, 2005.
  16. W. Song, B. Zhang, W. Xiaorong, “Compressive Sensing for Smart Grid Wireless Network,” Ad Hoc & Sensor Wireless Networks, vol. 20, no. 3, pp. 179–193, 2012.
  17. S. Medina Hurtado, J. García Aguado, “Predicción de Demanda de energía en Colombia mediante un sistema de inferencia difuso neuronal,” Energética, no. 33, pp. 15–24, 2005.
  18. X. Serrano-Guerrero, R. Prieto-Galarza, E. Huilcatanda, J. Cabrera-Zeas, G. Escriva-Escriva, “Election of variables and short-term forecasting of electricity demand based on backpropagation artificial neural networks,” in IEEE International Autumn Meeting on Power, Electronics and Computing, 2017, pp. 1–5. https://doi.org/10.1109/ROPEC.2017.8261630 DOI: https://doi.org/10.1109/ROPEC.2017.8261630
  19. R. Pino, D. De La Fuente, J. Parreño, P. Priore, “Aplicación de redes neuronales artificiales a la previsión de series temporales no estacionarias o no invertibles,” Qüestiio, vol. 26, no. 3, pp. 461–482, 2002.
  20. J. Inga-Ortega, E. Inga-Ortega, C. Gomez, R. Hincapie, “Electrical load curve reconstruction required for demand response using compressed sensing techniques,” in IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), 2017, pp. 1–6. DOI: https://doi.org/10.1109/ISGT-LA.2017.8126731
  21. H. Li, S. Gong, L. Lai, Z. Han, R. C. Qiu, D. Yang, “Efficient and Secure Wireless Communications for Advanced Metering Infrastructure in Smart Grids,” IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1540–1551, 2012. https://doi.org/10.1109/TSG.2012.2203156 DOI: https://doi.org/10.1109/TSG.2012.2203156
  22. D. I. Cabrera, Diseño de una Red Neuronal Artifical para la Predicción de la demanda Eléctrica, Master Thesis, Universidad Nacional de Loja, Spain, 2014.
  23. R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neural Networks for Perception, Elsevier, 1992, pp. 65–93. DOI: https://doi.org/10.1016/B978-0-12-741252-8.50010-8
  24. N. K. Treadgold, T. D. Gedeon, “A cascade network algorithm employing progressive RPROP,” Lecture Notes in Computer Science, vol. 1240, pp. 733–742, 1997. https://doi.org/10.1007/bfb0032532 DOI: https://doi.org/10.1007/BFb0032532
  25. S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv, 2016. https://arxiv.org/abs/1609.04747
  26. I. Ahmad, S. Ullah Swati, S. Mohsin, “Intrusions Detection Mechanism by Resilient Back Propagation (RPROP),” European Journal of Scientific Research, vol. 17, no. 4, pp. 523–531, 2007.
  27. A. Ranganathan, “The Levenberg-Marquardt Algorithm,” Tutoral LM Algorithm, vol. 11, no. 1, pp. 101–110, 2004.
  28. P. Ponce Cruz, Inteligencia Artificial con aplicaciones a la ingeniería, 1st ed. México: Alfaomega, 2010.
  29. B. M. Wilamowski, H. Yu, “References from online meetings,” IEEE Transactions on Neural Networks and Learning Systems, vol. 21, no. 6, pp. 930–937, 2010. DOI: https://doi.org/10.1109/TNN.2010.2045657
  30. A. K. Alexandridis, A. D. Zapranis, Wavelet Neural Networks with Applications in Financial Engineering, Chaos, and Classification, 2014. DOI: https://doi.org/10.1002/9781118596272

Downloads

Download data is not yet available.