Skip to main navigation menu Skip to main content Skip to site footer

Electrolytic process applied with addition of salts for color removal in drinking water treatment

Abstract

In this paper the electrolytic process application as a water purification treatment stage from the Ipê neighborhood lake (Ilha Solteira –São Paulo, Brazil–) was evaluated. The treatment efficiency for apparent and true color removal, in samples by addition of humic substances, to reach different colors levels was determined. It was monitored the 1 g/L NaCl and TiO2 addition individual effect. The removal efficiency for each trial in samples taken from the electrolytic reactor each 10 minutes during one hour, were calculated.

For the water sample with initial apparent color of 25 Hu, it was reduced up to 15 Hu –maximum permitted value according the Brazilian drinking water guidelines– after 30 reaction minutes. For the apparent water color with 66 Hu, with sodium chloride addition, a reduction up to 13 Hu was measured after one hour reaction. In the trials with humic substances addition, the apparent color removal for water with 708 and 247 Hu, were 87.3 % and 84.2 %, respectively, after 60 minutes of reaction.

The results showed the electrolytic process performance with use of salts as a drinking water treatment stage, both for the apparent color reduction below the maximum permitted values defined by the legislation, as for its removal up to certain levels, treatment stage that should be complemented by additional stages. 

Keywords

color recolor removal, drinking water, electrolysis, purification treatment.moval, purification treatment

PDF (Español) HTML (Español)

References

  • M. R. Lima and R. Bresaola. “Uso de reatores de fluxo ascendente como unidades de floculação clarificação na produção de água para abastecimento público,” Rev. DAE, vol. 58 (184), pp. 4-10, Sep. 2010. DOI: http://dx.doi.org/10.4322/dae.2014.064.
  • Programa das Nações Unidas para o Desenvolvimento (PNUD). Resumo Relatório do Desenvolvimento Humano. A água para lá da escassez: poder, pobreza e a crise mundial da água. New York-USA: Programa das Nações Unidas para o Desenvolvimento, 2006.
  • W. G. Botero, A. dos Santos, L. C. de Oliveira, and J. C. Rocha. “Caracterização de lodo gerado em estações de tratamento de água: perspectivas de aplicação agrícola,” Quím. Nova, vol. 32 (8), pp. 2018-2022, Aug. 2009. DOI: http://dx.doi.org/10.1590/S0100-40422009000800007.
  • L. Di Bernardo, C. C. S. Brandão, and L. Heller. Tratamento de águas de abastecimento por filtração em múltiplas etapas. Rio de Janeiro, Brasil: PROSAB, 1999.
  • C. Montoya, D. Loaiza, P. Torres, C. H. Cruz, and J. C. Escobar. "Efecto del incremento en la turbiedad del agua cruda sobre la eficiencia de procesos convencionales de potabilización,” Rev. EIA, n° 16, pp. 137-148, Dec. 2011.
  • Companhia Ambiental do Estado de São Paulo-CETESB. Qualidade das águas interiores no estado de São Paulo, Série Relatórios-Apêndice A: significado ambiental e sanitário das variáveis de qualidade das águas e dos sedimentos e metodologias analíticas e de amostragem. São Paulo, Brasil: CETESB, 2009.
  • A. Barrenechea. “Aspectos fisicoquímicos de la calidad del agua”. Tratamiento de agua para consumo humano. Plantas de filtración rápida, Manual I: Teoría, Tomo I. L. Vargas. Lima, Perú: Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente CEPIS/OPS, pp. 1-54, 2004.
  • World Health Organization (WHO). Guidelines for Drinking-water Quality, Fourth Edition. Geneva, Switzerland: WHO, 2011.
  • Health Canada, Guidelines for Canadian Drinking Water Quality: Guideline Technical Document-Trihalomethanes. Ottawa, Canada: Water, Air and Climate Change Bureau, Healthy Environments and Consumer Safety Branch-Health Canada, 2006.
  • Environmental Protection Agency (EPA). Drinking Water Guidance on Disinfection By-Products Advice Note No. 4. Version 2. Disinfection By-Products in Drinking Water. Wexford, Ireland: EPA, Office of Environmental Enforcement, 2012.
  • M. Rodríguez, G. Rodríguez, J. Serodes, and R. Sadiq. “Subproductos de la desinfección del agua potable: formación, aspectos sanitarios y reglamentación,” Rev. Interciencia, vol. 32 (11), pp. 749-756, Nov. 2007.
  • J. Grimm, D. Bessarabov, and R. Sanderson. “Review of Electro-assisted methods for water purification,” Desalination, vol. 115 (3), pp. 285-294, Aug. 1998. DOI: http://dx.10.1016/S0011-9164(98)00047-2.
  • Metcalf and Eddy. Wastewater engineering, treatment and reuse. Fourth edition-international edition. Singapore: McGraw-Hill, 2004.
  • W. G. Wiendl. “Processos eletrolíticos para depuração de esgotos: Uma revisão secular,” Rev. DAE, vol. 45 (140), pp. 50-54, Mar. 1985.
  • D. F. de Angelis, C. R. Corso, E. D. Bidoia, P. B. Moraes, R. N. Domingos, and R. C. Rocha-Filho. “Eletrólise de resíduos poluidores: I - efluente de uma indústria liofilizadora de condimentos,” Quím. Nova, vol. 21 (1), pp. 20-24, Feb. 1998. DOI: http://dx.doi.org/10.1590/S0100-40421998000100004.
  • C. Elicker, P. J. Sanches, and K. R. L. Castagno. “Electroremediation of heavy metals in sewage sludge,” Braz. J. Chem. Eng., vol. 31 (2), pp. 365-371, Jun. 2014. DOI: http://dx.doi.org/10.1590/0104-6632.20140312s00002394.
  • E. Butler, Y.-T. Hung, R. Y-L Yeh, and M. S. Al Ahmad. “Electrocoagulation in Wastewater Treatment,” Water, vol. 3 (4), pp. 495-525, Apr. 2011. DOI: http:// dx.10.3390/w3020495.
  • L. Di Bernardo and A. Dantas. Métodos e Técnicas de Tratamento de Água. 2ª ed. São Carlos, Brasil: Editora RIMA, 2005.
  • G. L. Pinheiro, C. A. Silva, and A. E. Furtini. “Crescimento e nutrição de clone de eucalipto em resposta à aplicação de concentrações de c-ácido húmico,” Rev. Bras. Ciên. Solo, vol. 34 (4), pp. 1217-1229, Feb. 2010. DOI: http://dx.doi.org/10.1590/S0100-06832010000400021.
  • L. F. Garcés, E. A. Mejía, and J. J. Santamaría. “La fotocatálisis como alternativa para el tratamiento de aguas residuales,” Rev. Lasallista Investig., vol. 1 (1), pp. 83-92, Dec. 2004.
  • Brasil. Ministério da Saúde. “Portaria No. 2.914, de 12 de dezembro de 2011. Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade”. Diário Oficial da União, Brasília, DF: 14 Dec. 2011, n. 239, seção 1, p. 39-46.
  • G. Mouedhen, M. Feki, M. De Petris, and H.F. Ayedi. “Behavior of aluminum electrodes in electrocoagulation process,” J. Hazard. Mater., vol. 150 (1), pp. 124-135, Jan. 2008. DOI: http://dx.10.1016/j.jhazmat.2007.04.090.
  • B. Zhu, D. A. Clifford, and S. Chellam. “Comparison of electrocoagulation and chemical coagulation pretreatment for enhanced virus removal using microfiltration membranes,” Water Res., vol. 39 (13), pp. 3098–3108, Aug. 2005. DOI: http://dx.10.1016/j.watres.2005.05.020.
  • L. Di Bernardo and L. P. Sabogal. Seleção de Tecnologias de Tratamento de Água. São Carlos, Brasil: Editora LDiBe, 2009.
  • M. Cataldo, L. Barletta, M. Dogliotti, N. Russo, D. Fino, and P. Spinelli. “Heavy metal removal by means of electrocoagulation using aluminum electrodes for drinking water purification,” J. Appl. Electrochem., vol. 42 (9), pp. 809-817, Sep. 2012. DOI: http://dx.10.1007/s10800-012-0455-8.

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.