Skip to main navigation menu Skip to main content Skip to site footer

Evaluation of irreversibility in an ammonia-water absorption refrigeration system using three different mathematical models to calculate the thermodynamic properties


Second Law or Exergy Analyses of Absorption Refrigeration Systems (ARS) are very important for optimisations based on available work; these analyses are derived from the operating conditions and property calculations. There are several methods available for calculating the thermodynamic properties used in modelling these systems. A thermodynamic study on an ARS with the ammonia-water mixture (base case) was carried out with the objective of analysing the sensitivity of the overall and individual component irreversibility to the thermodynamic property. To this end, three existing methods were used: (M1), a model proposed by Ibrahim and Klein (1993) and used in the Engineering Equation Solver (EES) commercial software; (M2), a model proposed by Tillner-Roth and Friend (1998) and embodied in REFPROP v.8.0 developed by the National Institute of Standards and Technology (NIST); and (M3), a method proposed by Xu and Goswami (1999) that was programmed for this analysis. The obtained differences in the properties and the first law performance of the ARS are insignificant in the determination of the coefficient of performance (COP) (base case: 0.595, M1: 0.596, M2: 0.594, M3: 0.599). For the second law analysis, the overall irreversibility was the same (123.339kW) despite the irreversibilities per component had important differences: the solution heat exchanger (M1: 5.783kW, M2: 6.122kW, M3: 8.701kW), the desorber (generator) (M1: 51.302kW, M2: 45.713kW, M3: 49.098kW) and the rectifier (M1: 0.766kW, M2: 3.565kW, M3: 0.427kW). The components that destroy exergy the most are the desorber, the absorber and the condenser.


ammonia-water properties, absorption refrigeration, coefficient of performance, irreversibility



  1. A. Rivera, J. Cerezo, R. Rivero, et al., “Single Stage and Double Absorption heat transformers used to recover energy in a distillation column of butane and pentane,” Int J of Energy Research, vol. 27 (14), pp. 1279-1292, Nov. 2003. DOI: DOI:
  2. A. I. Kalina, “Combined Cycle and waste-heat recovery power systems based on a novel thermodynamic energy cycle utilizing low-temperature heat for power generation,” ASME paper No. 83-JPGC-GT-3, 1983. DOI:
  3. S. Stecco, and U. Desideri, “A thermodynamic analysis of the kalina cycles: comparisons, problems and perspectives,” Gas Turbine and Aeroengine Congress and Exposition: ASME, 1989. DOI:
  4. S. H. Rizvi, and R. A. Heidemann, “Vapor-Liquid equilibria in the ammonia-water system,” J Chem Eng Data, vol. 32 (2), pp. 183-191, Apr. 1987. DOI: DOI:
  5. R. A. Macris, B. E. Eakin, R. T. Ellington, et al., “Physical and thermodynamic properties of ammonia-water mixtures,” Research Bulletin No. 14. Inst. of Gas Technology, 1964.
  6. R. T. Ellington, G. Kinst, R. E. Peck, el at., “The absorption cooling process,” Research Bulletin, Institute of Gas Technology, 1957.
  7. R. Tillner-Roth, and G. Friend, “Survey and Assessment of available measurements on thermodynamic properties of the mixture {Water+Ammonia},” J Phys Chem Ref Data, vol. 27(1), pp. 45-61, Jan. 1998. DOI: DOI:
  8. A. Vidal, R. Best, R. Rivero, et al., “Analysis of a combined power and refrigeration cycle by the exergy method,” Energy, vol. 31 (15), pp. 3401-3414, Dec. 2006. DOI: DOI:
  9. E. Thorin, C. Dejfors, and G. Svedberg, “Thermodynamic properties of ammonia-water mixtures for power cycles,” Int J Thermophys, vol. 19(2), pp. 501-510, 1998. DOI: DOI:
  10. A. A. Zatorskii, “Algorithm for calculation of the parameters of the junction points of the cycles of absorption-type water-ammonia refrigeration machines in a digital computer,” Plenum Publishing Corporation, pp. 716-719, 1979. DOI:
  11. K. E. Herold, K. Hain, and M. J. Moran, “AMMWAT: A computer program for calculating the thermodynamic properties of ammonia and water mixtures using a Gibbs Free Energy formulation,” ASME 4, pp. 65-75, 1988.
  12. Y. M. Park, and R. E. Sonntag, “Thermodynamic properties of ammonia-water mixtures: a generalized equation-of-state approach,” ASME Trans, vol. 97, pp. 150-159, 1991.
  13. S. N. Mumah, S.S. Adefila, and E.A. Arinze, “Properties generation procedures for first and second law analyses of ammonia-water heat pump system,” Energy Convers Mgmt, vol. 35 (8), pp. 727-736, Aug. 1994. DOI: DOI:
  14. R. Tillner-Roth, and G. Friend, “A Helmholtz free energy formulation of the thermodynamic properties of the mixture {Water+Ammonia},” J Phys Chem Ref Data, vol. 27(1), pp. 63-96, Jan. 1998. DOI: DOI:
  15. A. Nowarski, and D. G. Friend, “Application of the Extended Corresponding States Method to the Calculation of the Ammonia-Water Mixture Thermodynamic Surface,” International Journal of Thermophysics, vol. 19 (4), pp. 1133-1142, 1998. DOI: DOI:
  16. R. M. Enick, G. P. Donahey, and M. Holsinger, “Modeling the High-Pressure Ammonia-Water System with WATAM and the Peng-Robinson Equation of Sstate for Kalina Cycle Studies,” Ind Eng Chem Res, vol. 37 (5), pp. 1644-1650, May. 1998. DOI: DOI:
  17. L. A. Weber, “Estimating the virial coefficients of the ammonia + water mixture,” Fluid Phase Equilibria, vol. 162 (1-2), pp. 31-49, Aug. 1999. DOI: DOI:
  18. F. Xu, and D. Y. Goswami, “Thermodynamic properties of ammonia-water mixtures for power-cycle applications,” Energy, vol. 24 (6), pp. 525-536, Jun. 1999. DOI: DOI:
  19. R. Sharma, D. Singhal, R. Ghosh, and A. Dwivedi, “Potential applications of artificial neural networks to thermodynamics: vapor-Liquid equilibrium predictions,” Computers and Chemical Engineering, vol. 23 (3), pp. 385-390, Feb. 1999. DOI: DOI:
  20. R. Lugo, J. Guilpart, and L. Fournaison, “Calculation method of thermophysical properties of ammonia-water mixtures,” Presentación Second Workshop on Ice Slurries, Paris France: International Institute of Refrigeration, 2000.
  21. A. A. Vasserman, A. G. Slynko, S. V. Bodyul, et al., “A Thermophysical Property Databank for Technically Important Gases and Liquids,” International Journal of Thermodynamics, vol. 22 (2), pp. 477-485, 2001. DOI: DOI:
  22. R. Lugo, L. Fournaison, J. M. Chourot, et al., “An excess function method to model the thermophysical properties of one-phase secondary refrigerants,” International Journal of Refrigeration, vol. 25 (7), pp. 916-923, Nov. 2002. DOI: DOI:
  23. R. Span, and W. Wagner, “Equations of State for Technical Applications. I. Simultaneously Optimized Functional Forms for Nonpolar and Polar Fluids,” Int J of Thermophysics, vol. 24 (1), pp. 1-39, 2003. DOI: DOI:
  24. R. Span, and W. Wagner, “Equations of State for Technical Applications. III. Results for Polar Fluids,”Int J of Thermophysics, vol. 24 (1), pp. 111-162, 2003. DOI: DOI:
  25. M. Barhoumi, A. Snoussi, E. N. Ben, et al., “Modélistion des données thermodynamiques du mélange ammoniac/eau,” Int J Refrig, vol. 27 (3), pp. 271-283, May. 2004. DOI: DOI:
  26. Kh. Mejbri, and A. Bellagi, “Modelling of the thermodynamic properties of the water-ammonia mixture by three different approaches,” Int J Refrig, vol. 29 (2), pp. 211-218, Mar. 2006. DOI: DOI:
  27. A. Sencan, “Artificial intelligent methods for thermodynamic evaluation of ammonia-water refrigeration system,” Energy Conv & Man, vol. 47, pp. 3319-3332, 2006. DOI: DOI:
  28. A. H. Farrokh-Niae, H. Moddarress, and M. Mohsen-Nia, “A three-parameter cubic equation of state for prediction of thermodynamic properties of fluids,” J Chem Thermodynamics, vol. 40 (1), pp. 84-95, Jan. 2008. DOI: DOI:
  29. N. S. Ganesh, and T. Srinivas, “Evaluation of thermodynamic properties of ammonia-water mixture up to 100 bar for power application systems,” Journal of Mechanical Engineering Research, vol. 3(1), pp. 25-39, 2011.
  30. K. Sadhukhan, A. K. Chowdhuryi, and B. K. Mandal, “Computer Based Thermodynamic Properties of Ammonia-Water Mixture for the Analysis of Power and Refrigeration Cycles,” Int J of Thermodynamics, vol. 12(3), pp. 133-139, 2012. DOI: DOI:
  31. E. Thorin, “Thermophysical properties of ammonia-water mixtures for prediction of heat transfer areas in power cycles,” Int J Thermophys, vol. 22(1), pp. 201-214, 2001. DOI: DOI:
  32. J. Pátek, and J. Klomfar, “Simple functions for fast calculations of selected thermodynamic properties of the ammonia-water system,” Int J Refrig, vol. 18(4), pp. 228-234, May. 1995. DOI: DOI:
  33. E. Thorin, “Comparison of correlations for predicting thermodynamic properties of ammonia-water mixtures,” Int J Thermophys, vol. 21(4), pp. 853-870, 2000. DOI: DOI:
  34. K. E. Herold, R. Radermacher, and S. A. Klein, “Absorption chillers and heat pump,” CRC Press Inc, USA, 1996.
  35. O. M. Ibrahim, and S. A. Klein, “Thermodynamic properties of ammonia-water mixtures,” ASHRAE Trans, pp. 1495-1502, 1993.
  36. F. Xu, and D. Y. Goswami, “Erratum to: Thermodynamic properties of ammonia-water mixture for power-cycle applications,” Energy, vol. 24 (1999), pp. 525-536, Energy, vol. 27 (6), p. 203, Jun. 2002. DOI: DOI:
  37. C. Martin, “Study of cooling production with a combined power and cooling thermodynamic cycle,” Ph. D. Thesis, University of Florida, USA. 2004. DOI:
  38. Y. M. El-Sayed, and M. Tribus, “Thermodynamic properties of water ammonia mixtures theoretical implementation for use in power cycles analysis,” Special publication AES (1) New York, ASME, pp. 89-95, 1985.
  39. P. C. Gillespie, W. V. Wilding, and G. M. Wilson, “Vapor-Liquid equilibrium measurements on the ammonia-water system from 313 K to 589 K,” AIChE Symp Ser, vol. 83(256), pp. 97-127, 1987.
  40. B. Ziegler, and Ch. Trepp, “Equation of state for ammonia-water mixtures,” Int J Refrig, vol. 7 (2), pp. 101-106, Mar. 1984. DOI: DOI:
  41. A. A. Hasan, and D. Y. Goswami, “Exergy analysis of a Combined Power and Refrigeration Thermodynamic Cycle Driven by a Solar Heat Source,” Journal of Solar Energy Engineering, vol. 125 (1), pp. 55-60, 2003. DOI: DOI:
  42. D. Boer, B. H. Gebreslassie, M. Medrano, et al., “Effect of internal heat recovery in ammonia-water absorption cooling cycles: exergy and structural analysis,” vol. 12(1), pp. 17-27, Mar. 2009.
  43. I. Vera-Romero and Ch. L. Heard-Wade, “Desarrollo de una aplicación para el cálculo de las propiedades de la mezcla amoniaco-agua,” Revista Ingeniería Investigación y Desarrollo,” vol. 17(2), pp. 58-72, Jun. 2017. DOI: DOI:


Download data is not yet available.