Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Optimización del efecto de la temperatura y altura del lecho en la bioadsorción de Cr (VI) en sistema continuo

Resumen

En el presente artículo se propone como adsorbentes residuos del proceso de extracción de almidón de plátano para remover Cr (VI) en un sistema continuo de lecho fijo, variando la temperatura 33, 40, 55, 70 y 76 °C y altura de lecho en el rango de 15.5, 30, 65, 100, 114.5 mm. El material adsorbente fue caracterizado mediante espectroscopia infrarroja por transformada de Fourier (FTIR), Microscopia Electrónica de Barrido (SEM) y análisis por difracción de rayos X (DRX). La solución de Cr (VI) a 100 ppm tuvo contacto con la columna por gravedad, con un caudal de 0.75 mL/s a las diferentes condiciones trabajadas. Al final del proceso la concentración residual del metal fue medida mediante espectroscopia UV-Vis usando el método estándar para la determinación de Cr (VI) en agua ASTM D1687-17. De los resultados, se estableció que el bioadsorbente cuenta con la presencia de grupos funcionales hidroxilo, carboxilo y metilo, y que el proceso de adsorción está controlado por interacciones electrostáticas; las variables evaluadas incidieron de forma significativa en el proceso, estableciendo al aplicar la metodología RSM que las condiciones óptimas de operación son 81.49 mm de altura de lecho y temperatura de 68 ºC. Del comportamiento de la curva de ruptura se encontró que el bio-material tiene potencial para ser usado como relleno en una columna de adsorción con el fin de remover Cr (VI).

Palabras clave

bioadsorción, biomasa residual, metal pesado, sistema continuo

PDF (English) PDF XML (English)

Biografía del autor/a

Angel Villabona-Ortíz, M.Sc.

M.Sc. in Environmental Engineering, Universidad de Cartagena, Process Design and Biomass Utilization Research Group (IDAB), avillabonao@unicartagena.edu.co. ORCID: https://orcid.org/0000-0002-2323-1544

Erika Ruiz-Paternina

Master in Urban Sustainable Technologies, Universidad de Cartagena, Research Group on Process Design and Utilization of Biomasses (IDAB), Young COLCIENCIAS Researcher, erikbeatriz@gmail.com.


Citas

  1. M. O. Borna, M. Pirsaheb, M. V. Niri, R. K. Mashizie, B. Kakavandi, M. R. Zare, and A. Asadi, “Batch and column studies for the adsorption of chromium(VI) on low-cost Hibiscus Cannabinus kenaf, a green adsorbent,” Journal of the Taiwan Institute of Chemical Engineers, vol. 68, pp. 80-89, 2016. https://doi.org/10.1016/j.jtice.2016.09.022 DOI: https://doi.org/10.1016/j.jtice.2016.09.022
  2. C. Tejada-Tovar, Á. Villabona-Ortiz, and M. Jiménez-Villadiego, “Remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente,” Revista U.D.C.A. Actualidad & Divulgación Científica, vol. 10 (1), pp. 139-147, 2017. https://doi.org/10.31910/rudca.v20.n1.2017.71 DOI: https://doi.org/10.31910/rudca.v20.n1.2017.71
  3. C. Tejada-Tovar, A. Villabona-Ortiz, and E. Ruiz-Paternina, “Cinética de adsorción de Cr (VI) usando biomasas residuales modificadas químicamente en sistemas por lotes y continuo,” Revista Ion, vol. 28 (1), pp. 29-41, 2015.
  4. M. Manjuladevi, R. Anitha, and S. Manonmani, “Kinetic study on adsorption of Cr (VI), Ni (II), Cd (II) and Pb (II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel,” Applied Water Science, vol. 8, e36, 2018. https://doi.org/10.1007/s13201-018-0674-1 DOI: https://doi.org/10.1007/s13201-018-0674-1
  5. Ş. Parlayici and E. Pehlivan, “Comparative study of Cr (VI) removal by bio-waste adsorbents: equilibrium, kinetics, and thermodynamic,” Journal of Analytical Science and Technology, vol. 10, e15, 2019. https://doi.org/10.1186/s40543-019-0175-3 DOI: https://doi.org/10.1186/s40543-019-0175-3
  6. D. L. Gómez-Aguilar, J. P. Rodríguez-Miranda, J. A. Esteban-Muñóz, and J. F. Betancur, “Coffee Pulp: A Sustainable Alternative Removal of Cr (VI) in Wastewaters. Processes,” Processes, vol. 7 (7), e403, 2019. https://doi.org/10.3390/pr7070403 DOI: https://doi.org/10.3390/pr7070403
  7. M. Akram, H. N. Bhatti, M. Iqbal, S. Noreen, and S. Sadaf, “Biocomposite efficiency for Cr(VI) adsorption: Kinetic, equilibrium and thermodynamics studies,” Journal of Environmental Chemical Engineering, vol. 5 (1), pp. 400-411, 2017. https://doi.org/10.1016/j.jece.2016.12.002 DOI: https://doi.org/10.1016/j.jece.2016.12.002
  8. A. Abdolali, H. H. Ngo, W. Guo, J. L. Zhou, J. Zhang, S. Liang, S. W. Chang, D. D. Nguyen, Y. Liu, “Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column,” Bioresource Technology, vol. 229, pp. 78-87, 2017. https://doi.org/10.1016/j.biortech.2017.01.016 DOI: https://doi.org/10.1016/j.biortech.2017.01.016
  9. Y. Yi, J. Lv, Y. Liu, and G. Wu, “Synthesis and application of modified Litchi peel for removal of hexavalent chromium from aqueous solutions,” Journal of Molecular Liquids, vol. 225, pp. 28-33, 2017. https://doi.org/10.1016/j.molliq.2016.10.140 DOI: https://doi.org/10.1016/j.molliq.2016.10.140
  10. A. Kumar, A. Balouch, A. A. Pathan, A. M. Mahar, M. S. Jagirani, F. A. Mustafai, M. Zubair, B. Laghari, and P. Panah, “Remediation techniques applied for aqueous system contaminated by toxic Chromium and Nickel ion,” Geology, Ecology, and Landscapes, vol. 1 (2), pp. 143-153, 2017. https://doi.org/10.1080/24749508.2017.1332860 DOI: https://doi.org/10.1080/24749508.2017.1332860
  11. M. Nigam, S. Rajoriya, S. R. Singh, and P. Kumar, “Adsorption of Cr (VI) Ion from Tannery Wastewater on Tea Waste: Kinetics, Equilibrium and Thermodynamics Studies,” Journal of Environmental Chemical Engineering, vol. 7 (3), e103188, 2019. https://doi.org/10.1016/j.jece.2019.103188 DOI: https://doi.org/10.1016/j.jece.2019.103188
  12. R. M. Naik, S. Ratan, and I. Singh, “Use of orange peel as an adsorbent for the removal of Cr (VI) from its aqueous solution,” Indian Journal of Chemical Technology, vol. 25 (3), pp. 300-305, 2018.
  13. N. K. Mondal, A. Samanta, S. Chakraborty, and W. A. Shaikh, “Enhanced chromium (VI) removal using banana peel dust: isotherms , kinetics and thermodynamics study,” Sustainable Water Resources Management, vol. 4, pp. 489-497, 2017. https://doi.org/10.1007/s40899-017-0130-7 DOI: https://doi.org/10.1007/s40899-017-0130-7
  14. O. M. Rodriguez-Narvaez, J. M. Peralta-Hernandez, A. Goonetilleke, and E. R. Bandala, “Treatment technologies for emerging contaminants in water: A review,” Chemical Engineering Journal, vol. 323, pp. 361-380, 2017. https://doi.org/10.1016/j.cej.2017.04.106 DOI: https://doi.org/10.1016/j.cej.2017.04.106
  15. A. Villabona-Ortíz, C. Tejada-Tovar, and R. Ortega-Toro, “Modelling of the adsorption kinetics of Chromium (VI) using waste biomaterials,” Revista Mexicana de Ingeniería Química, vol. 19 (1), pp. 401-408, 2019. https://doi.org/10.24275/rmiq/IA650 DOI: https://doi.org/10.24275/rmiq/IA650
  16. F. K. Al-Jubory, I. M. Mujtaba, and A. S. Abbas, “Preparation and characterization of biodegradable crosslinked starch ester as adsorbent,” AIP Conference Proceedings, vol. 2213, e020165, 2020. https://doi.org/10.1063/5.0000170 DOI: https://doi.org/10.1063/5.0000170
  17. J. C. Lucas, V. D. Quintero, and C. A. C. Valencia, “Caracterización de harina y almidón obtenidos a partir de plátano guineo AAAea (Musa sapientum L.),” Acta Agronómica, vol. 62 (2), pp. 83-96, 2013.
  18. B. C. Maniglia, and D. R. Tapia-Blácido, “Isolation and characterization of starch from babassu mesocarp,” Food Hydrocolloids, vol. 55, pp. 47-55, 2016. https://doi.org/10.1016/j.foodhyd.2015.11.001 DOI: https://doi.org/10.1016/j.foodhyd.2015.11.001
  19. C. Tejada-Tovar, A. Herrera-Barros, and A. Villabona-Ortíz, “Assessment of Chemically Modified Lignocellulose Waste for the Adsorption of Cr (VI),” Revista Facultad de Ingeniería, vol. 29 (54), e10298, 2020. https://doi.org/10.19053/01211129.v29.n54.2020.10298 DOI: https://doi.org/10.19053/01211129.v29.n54.2020.10298
  20. X. Luo, Y. Cai, L. Liu, and J. Zeng, “Cr (VI) adsorption performance and mechanism of an effective activated carbon prepared from bagasse with a one-step pyrolysis and ZnCl2 activation method,” Cellulose, vol. 26, pp. 4921-4934, 2019. https://doi.org/10.1007/s10570-019-02418-9 DOI: https://doi.org/10.1007/s10570-019-02418-9
  21. C. Tejada-Tovar, A. Gonzalez-Delgado, and A. Villabona-Ortiz, “Characterization of Residual Biomasses and Its Application for the Removal of Lead Ions from Aqueous Solution,” Applied Sciences, vol. 9 (21), e4486, 2019. https://doi.org/10.3390/app9214486 DOI: https://doi.org/10.3390/app9214486
  22. J. Long, X. Huang, X. Fan, Y. Peng, and J. Xia, “Effective adsorption of nickel (II) with Ulva lactuca dried biomass: isotherms, kinetics and mechanisms,” Water Science & Technology, vol. 78 (1), pp. 156-164, 2018. https://doi.org/10.2166/wst.2018.253 DOI: https://doi.org/10.2166/wst.2018.253
  23. S. M. Batagarawa and A. K. Ajibola, “Comparative evaluation for the adsorption of toxic heavy metals on to millet, corn and rice husks as adsorbents,” Journal of Analytical & Pharmaceutical Research, vol. 8 (3), pp. 119-125, 2019. https://doi.org/10.15406/japlr.2019.08.00325 DOI: https://doi.org/10.15406/japlr.2019.08.00325
  24. L. A. Romero-Cano, H. García-Rosero, L. V. Gonzalez-Gutierrez, L. A. Baldenegro-Pérez, and F. Carrasco-Marín, “Functionalized adsorbents prepared from fruit peels: Equilibrium, kinetic and thermodynamic studies for copper adsorption in aqueous solution,” Journal of Cleaner Production, vol. 162, pp. 195-204, 2017. https://doi.org/10.1016/j.jclepro.2017.06.032 DOI: https://doi.org/10.1016/j.jclepro.2017.06.032
  25. E. Rodrigues, O. Almeida, H. Brasil, D. Moraes, and M. A. L. Reis, “Adsorption of chromium (VI) on hydrotalcite-hydroxyapatite material doped with carbon nanotubes : Equilibrium , kinetic and thermodynamic study,” Applied Clay Science, vol. 172, pp. 57-64, 2019. https://doi.org/10.1016/j.clay.2019.02.018 DOI: https://doi.org/10.1016/j.clay.2019.02.018
  26. N. M. A. Al-Lagtah, A. H. Al-Muhtaseb, M. N. M. Ahmad, and Y. Salameh, “Chemical and physical characteristics of optimal synthesised activated carbons from grass-derived sulfonated lignin versus commercial activated carbons,” Microporous and Mesoporous Materials, vol. 225, pp. 504-514, 2016. https://doi.org/10.1016/j.micromeso.2016.01.043 DOI: https://doi.org/10.1016/j.micromeso.2016.01.043
  27. N. A. Medellín-Castillo, M. G. Hernández-Ramírez, J. J. Salazar-Rábago, G. J. Labrada-Delgado, and A. Aragón-Piña, “Bioadsorción de Plomo (II) presente en solución acuosa sobre residuos de fibras naturales procedentes de la industria ixtlera (Agave lechuguilla Torr.Y Yucca carnerosana (Trel.) McKelvey),” Revista Internacional de Contaminación Ambiental, vol. 33 (2), pp. 269-280, 2017. https://doi.org/10.20937/rica.2017.33.02.08 DOI: https://doi.org/10.20937/RICA.2017.33.02.08
  28. Y. Chen, D. An, S. Sun, J. Gao, and L. Qian, “Reduction and removal of chromium VI in water by powdered activated carbon,” Materials, vol. 11 (2), e269, 2018. https://doi.org/10.3390/ma11020269 DOI: https://doi.org/10.3390/ma11020269
  29. W. Cherdchoo, S. Nithettham, and J. Charoenpanich, “Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea,” Chemosphere, vol. 221, pp. 758-767, 2019. https://doi.org/10.1016/j.chemosphere.2019.01.100 DOI: https://doi.org/10.1016/j.chemosphere.2019.01.100
  30. C. Lin, W. Luo, T. Luo, Q. Zhou, H. Li, and L. Jing, “A study on adsorption of Cr (VI) by modified rice straw: Characteristics, performances and mechanism,” Journal of Cleaner Production, vol. 196, pp. 626-634, 2018. https://doi.org/10.1016/j.jclepro.2018.05.279 DOI: https://doi.org/10.1016/j.jclepro.2018.05.279
  31. Q. Gao, J. Hua, R. Li, Z. Xing, L. Panga, M. Zhang, L. Xu, G. Wu, “Radiation-induced graft polymerization for the preparation of a highly efficient UHMWPE fibrous adsorbent for Cr(VI) removal,” Radiation Physics and Chemistry, vol. 130, pp. 92-102, 2017. https://doi.org/10.1016/j.radphyschem.2016.08.004 DOI: https://doi.org/10.1016/j.radphyschem.2016.08.004
  32. I. A. Aguayo-Villarreal, A. Bonilla-Petriciolet, and R. Muñiz-Valencia, “Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions,” Journal of Molecular Liquids, vol. 230, pp. 686-695, 2017. https://doi.org/10.1016/j.molliq.2017.01.039 DOI: https://doi.org/10.1016/j.molliq.2017.01.039
  33. H. N. Tran, D. T. Nguyen, G. T. Le, F. Tomul, E. C. Lima, S. H. Woo, A. K. Sarmah, H. Q. Nguyen, P. T. Nguyen, D. D. Nguyen, T. V. Nguyen, S. Vigneswaran, D. N. Vo, and H. P. Chao, “Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review,” Journal of Hazardous Materials, vol. 373, pp. 258-270, 2019. https://doi.org/10.1016/j.jhazmat.2019.03.018 DOI: https://doi.org/10.1016/j.jhazmat.2019.03.018
  34. M. C. Corral-Escárcega, M. G. Ruiz-Gutiérrez, A. Quintero-Ramos, C. O. Meléndez-Pizarro, D. Lardizabal-Gutiérrez, and K. Campos-Venegas, “Use of biomass-derived from pecan nut husks (Carya illinoinensis) for chromium removal from aqueous solutions. column modeling and adsorption kinetics studies,” Revista Mexicana de Ingeniería Quimíca, vol. 16 (3), pp. 939-953, 2017.
  35. L. Zhou, Y. Liu, S. Liu, Y. Yin, G. Zeng, X. Tan, X. Hu, X. Hu, L. Jiang, Y. Ding, S. Liu, and X. Huang, “Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures,” Bioresource Technology, vol. 218, pp. 351-359, 2016. https://doi.org/10.1016/j.biortech.2016.06.102 DOI: https://doi.org/10.1016/j.biortech.2016.06.102
  36. C. Tejada-Tovar, Á. Villabona-Ortíz, J. Paternina-Cuesta, V. Caballero-Romero, and C. Granados-Conde, “Optimización de parámetros para la construcción de la curva de ruptura en la adsorción de Cr(VI) sobre cáscara de cacao,” Revista U.D.C.A. Actualidad & Divulgación Científica, vol. 21 (1), pp. 167-177, 2018. https://doi.org/10.31910/rudca.v21.n1.2018.675 DOI: https://doi.org/10.31910/rudca.v21.n1.2018.675
  37. C. Tejada-Tovar, A. Villabona-Ortiz, A. Cabarcas, C. Benitez, and D. Acevedo, “Optimization of variables in fixed-bed column using the response surface methodology,” Contemporary Engineering Sciences, vol. 11 (23), pp. 1121-1133, 2018. https://doi.org/10.12988/ces.2018.83101 DOI: https://doi.org/10.12988/ces.2018.83101
  38. H. Haroon, T. Ashfaq, S. Mubashar, H. Gardazi, T. A. Sherazi, M. Ali, N. Rashid, and M. Bilal, “Equilibrium kinetic and thermodynamic studies of Cr(VI) adsorption onto a novel adsorbent of Eucalyptus camaldulensis waste: Batch and column reactors,” Korean Journal of Chemical Engineering, vol. 33, pp. 2898-2907, 2016. https://doi.org/10.1007/s11814-016-0160-0 DOI: https://doi.org/10.1007/s11814-016-0160-0
  39. P. S. Blanes, M. E.Bordoni, J. C. González, S. I. García, A. M. Atria, L. F. Sala, and S. E. Bellú, “Application of soy hull biomass in removal of Cr(VI) from contaminated waters. Kinetic, thermodynamic and continuous sorption studies,” Journal of Environmental Chemical Engineering, vol. 4 (1), pp. 516-526, 2016. https://doi.org/10.1016/j.jece.2015.12.008 DOI: https://doi.org/10.1016/j.jece.2015.12.008
  40. V. Manirethan, N. Gupta, R. M. Balakrishnan, and K. Raval, “Batch and continuous studies on the removal of heavy metals from aqueous solution using biosynthesised melanin-coated PVDF membranes,” Environmental Science and Pollution Research, 2019. https://doi.org/10.1007/s11356-019-06310-8 DOI: https://doi.org/10.1007/s11356-019-06310-8
  41. V. Manirethan, K. Raval, R. Rajan, H. Thaira, and R. M. Balakrishnan, “Kinetic and thermodynamic studies on the adsorption of heavy metals from aqueous solution by melanin nanopigment obtained from marine source : Pseudomonas stutzeri,” Journal of Environmental Management, vol. 214, pp. 315-324, 2018. https://doi.org/10.1016/j.jenvman.2018.02.084 DOI: https://doi.org/10.1016/j.jenvman.2018.02.084
  42. A. Mishra, B. Dutt, and A. Kumar, “Packed-bed column biosorption of chromium (VI) and nickel (II) onto Fenton modified Hydrilla verticillata dried biomass,” Ecotoxicology and Environmental Safety, vol. 132, pp. 420-428, 2016. https://doi.org/10.1016/j.ecoenv.2016.06.026 DOI: https://doi.org/10.1016/j.ecoenv.2016.06.026
  43. S. Rangabhashiyam, and P. Balasubramanian, “Performance of novel biosorbents prepared using native and NaOH treated Peltophorum pterocarpum fruit shells for the removal of malachite green,” Bioresource Technology Reports, vol. 3, pp. 75-81, 2018. https://doi.org/10.1016/j.biteb.2018.06.004 DOI: https://doi.org/10.1016/j.biteb.2018.06.004
  44. J. L. Gong, Y.-L. Zhang, Y. Jiang, G.-M. Zeng, Z.-H. Cui, K. Liu, C.-H. Deng, Q.-Y. Niu, J.-H. Deng, and S.-Y. Huan, “Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column,” Applied Surface Science, vol. 330, pp. 148-157, 2015. https://doi.org/10.1016/j.apsusc.2014.11.068 DOI: https://doi.org/10.1016/j.apsusc.2014.11.068
  45. S. Rangabhashiyam, and N. Selvaraju, “Adsorptive remediation of hexavalent chromium from synthetic wastewater by a natural and ZnCl2 activated Sterculia guttata shell,” Journal of Molecular Liquids, vol. 207, pp. 39-49, 2015. https://doi.org/10.1016/j.molliq.2015.03.018 DOI: https://doi.org/10.1016/j.molliq.2015.03.018
  46. K. H. Chu, “Breakthrough curve analysis by simplistic models of fixed bed adsorption: In defense of the century-old Bohart-Adams model,” Chemical Engineering Journal, vol. 380, e122513, 2020. https://doi.org/10.1016/j.cej.2019.122513 DOI: https://doi.org/10.1016/j.cej.2019.122513
  47. N. Nordin, N. A. A. Asmadi, M. K. Manikam, A. A. Halim, M. M. Hanafiah, and S. N. Hurairah, “Removal of Hexavalent Chromium from Aqueous Solution by Adsorption on Palm Oil Fuel Ash (POFA),” Journal of Geoscience and Environment Protection, vol. 8 (2), pp. 112-127, 2020. https://doi.org/10.4236/gep.2020.82008 DOI: https://doi.org/10.4236/gep.2020.82008
  48. S. Muthusaravanan, N. Sivarajasekar, J. S. Vivek, T. Paramasivan, M. Naushad, J. Prakashmaran, V. Gayathri, and O. K. Al-Duaij, “Phytoremediation of heavy metals: mechanisms, methods and enhancements,” Environmental Chemistry Letters, vol. 16, pp. 1339-1359, 2018. https://doi.org/10.1007/s10311-018-0762-3 DOI: https://doi.org/10.1007/s10311-018-0762-3
  49. A. L. Arim, K. Neves, M. J. Quina, and L. M. Gando-Ferreira, “Experimental and mathematical modelling of Cr(III) sorption in fixed-bed column using modified pine bark,” Journal of Cleaner Production, vol. 183 (3), pp. 272-281, 2018. https://doi.org/10.1016/j.jclepro.2018.02.094 DOI: https://doi.org/10.1016/j.jclepro.2018.02.094
  50. M. Banerjee, N. Bar, R. K. Basu, and S. K. Das, “Removal of Cr(VI) from Its Aqueous Solution Using Green Adsorbent Pistachio Shell: a Fixed Bed Column Study and GA-ANN Modeling,” Water Conservation Science and Engineering, vol. 3, pp. 19-31, 2018. https://doi.org/10.1007/s41101-017-0039-x DOI: https://doi.org/10.1007/s41101-017-0039-x

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.