Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Evaluación de parámetros en la remoción de surfactante aniónico tipo Alquilbenceno sulfonato lineal usando electrocoagulación

Resumen

El objetivo de la presente investigación fue construir una celda de electrocoagulación en sistema por lotes y evaluar su capacidad de remover el surfactante aniónico de tipo Alquilbenceno sulfonato lineal (LAS) presente en aguas grises determinando el efecto del tipo de electrodos (Al o Fe), distancia entre electrodos (1, 1.5 y 2 cm) y voltajes de (10, 15 y 20 V). Los ensayos experimentales se realizaron durante 20 min. Las dimensiones de la celda electrólisis de onda corta construida en vidrio fueron 26 cm de largo, 7 cm de ancho y 12 cm de alto, con 10 electrodos de 12x6 cm sostenidos por una estructura de PVC. Se determinó la concentración de LAS en la solución mediante espectometria UV-Vis aplicando el método el método de Sustancias Activas al Azul de Metileno (SAAM). Se obtuvo una mayor remoción del 65.55% cuando se usó electrodos de aluminio, y 69.11% con electrodos de hierro una separación de 1.5 cm y un voltaje de 20 V, presentándose menor cambio en el pH, conductividad y consumo energético al usar el electrodo de Al3. Al evaluar el efecto del tiempo a la mejor configuración experimental (Al, 1.5 cm, 20 V) se estableció que la eficiencia de remoción aumentó a 75.13% en 60 min. Se presenta la electrocoagulación con electrodos de aluminios como una alternativa eficiente para la remoción de LAS en solución.

Palabras clave

contaminantes emergentes, electrólisis de onda corta, electroquímica, LAS

PDF (English) PDF XML (English)

Biografía del autor/a

Angel Villabona-Ortíz, M.Sc.

Roles: Supervision, Investigation, Writing – review & editing.

Candelaria Tejada-Tovar, M.Sc.

Roles: Methodology, Experimental design, Validation, Writing – original draft.

Lenis De-La-Rosa-Jiménez

Roles: Data curation, Validation.


Referencias

[1] C. Juliano, G. A. Magrini, “Cosmetic ingredients as emerging pollutants of environmental and health concern. A mini-review,” Cosmetics, vol. 4, no. 2, p. 11, 2017. https://doi.org/10.3390/cosmetics4020011

[2] C. Teodosiu, A. F. Gilca, G. Barjoveanu, S. Fiore, “Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment,” Journal of Cleaner Production, vol. 197, pp. 1210-1221, 2018. https://doi.org/10.1016/j.jclepro.2018.06.247

[3] C. Peña-Guzmán, S. Ulloa-Sánchez, K. Mora, R. Helena-Bustos, E. Lopez-Barrera, J. Alvarez, M. Rodriguez-Pinzón “Emerging pollutants in the urban water cycle in Latin America: A review of the current literature,” Journal of Environmental Management, vol. 237, pp. 408-423, 2019. https://doi.org/10.1016/j.jenvman.2019.02.100

[4] J. Martín, M. del M. Orta, S. Medina-Carrasco, J. L. Santos, I. Aparicio, E. Alonso, “Removal of priority and emerging pollutants from aqueous media by adsorption onto synthetic organo-funtionalized high-charge swelling micas,” Environmental Research, vol. 164, pp. 488-494, 2018. https://doi.org/10.1016/j.envres.2018.03.037

[5] A. A. Siyal, M. R. Shamsuddin, A. Low, N. E. Rabat, “A review on recent developments in the adsorption of surfactants from wastewater,” Journal of Environmental Management, vol. 254, e109797, 2020. https://doi.org/10.1016/j.jenvman.2019.109797

[6] A. Shukla, S. P. Trivedi, “Anionic Surfactant, Linear Alkyl Benzene Sulphonate Induced Oxidative Stress and Hepatic Impairments in Fish Channa punctatus,” Proceedings of the Zoological Society, vol. 71, pp. 382-389, 2018. https://doi.org/10.1007/s12595-017-0223-1

[7] J. J. Jiang, C. L. Lee, M. Der Fang, “Emerging organic contaminants in coastal waters: Anthropogenic impact, environmental release and ecological risk,” Marine Pollution Bulletin, vol. 85, pp. 391-399, 2014. https://doi.org/10.1016/j.marpolbul.2013.12.045

[8] B. Mohebrad, A. Rezaee, S. Dehghani, “Anionic Surfactant Removal Using Electrochemical Process: Effect of Electrode Materials and Energy Consumption,” Iranian Journal of Health, Safety and Environment, vol. 5, no. 2, pp. 939-946, 2018.

[9] A. Takdastan, M. Farhadi, J. Salari, B. Hashemzadeh, M. J. Mohammadi, S. Rehimi, Y. O. Khaniabadi, M. Vosoughim S. Sadeghi, A. Zahedi, “Electrocoagulation Process for Treatment of Detergent and Phosphate,” Archives of Hygiene Sciences, vol. 6, no. 1, pp. 66-74, 2017. https://doi.org/10.29252/archhygsci.6.1.66

[10] M. Bermeo Garay, O. Tinoco Gómez, “Remoción de colorantes de efluente sintético de industria textil aplicando tecnología avanzada,” Industrial Data, vol. 19, no. 2, pp. 91-95, 2016. https://doi.org/10.15381/idata.v19i2.12844

[11] D. B. Wellner, S. J. Couperthwaite, G. J. Millar, “Influence of operating parameters during electrocoagulation of sodium chloride and sodium bicarbonate solutions using aluminium electrodes,” Journal of Water Process Engineering, vol. 177, pp. 363-373, 2018. https://doi.org/10.1016/j.jwpe.2017.12.014

[12] Rusdianasari, Y. Bow, T. Dewi, “Peat Water Treatment by Electrocoagulation using Aluminium Electrodes,” IOP Conference Series: Earth and Environmental Science, vol. 258, no. 1, e012013, 2019. https://doi.org/10.1088/1755-1315/258/1/012013

[13] J. Llanos, J. Isidro, C. Sáez, P. Cañizares, M. A. Rodrigo, “Development of a novel electrochemical coagulant dosing unit for water treatment,” Journal of Chemical Technology & Biotechnology, vol. 94, no. 1, pp. 216-221, 2019. https://doi.org/10.1002/jctb.5767

[14] F. A. Nugroho, M. M. Sani, F. Apriyanti, P. T. P. Aryanti, “The Influence of Applied Current Strength and Electrode Configuration in Laundry Wastewater Treatment by Electrocoagulation,” Journal of Physics: Conference Series, vol. 1477, no. 5, pp. 1-7, 2020. https://doi.org/10.1088/1742-6596/1477/5/052018

[15] C. A. Martínez-Huitle, S. Ferro, “Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes,” Chemical Society Reviews, vol. 11, pp. 62-71, 2006. https://doi.org/10.1039/b517632h

[16] M. Dolati, A. A. Aghapour, H. Khorsandi, S. Karimzade, “Boron removal from aqueous solutions by electrocoagulation at low concentrations,” Journal of Environmental Chemical Engineering, vol. 5, no. 5, pp. 5150-5156, 2017. https://doi.org/10.1016/j.jece.2017.09.055

[17] Camcioǧlu, B. Özyurt, I. C. Doǧan, H. Hapoǧlu, “Application of response surface methodology as a new PID tuning method in an electrocoagulation process control case,” Water Science and Technology, vol. 76, no. 12, pp. 3410-3427, 2017. https://doi.org/10.2166/wst.2017.506

[18] M. G. Harinarayanan Nampoothiri, A. M. Manilal, P. A. Soloman, “Control of Electrocoagulation Batch Reactor for Oil removal from Automobile Garage Wastewater,” Procedia Technology, vol. 24, pp. 603-610, 2016. https://doi.org/10.1016/j.protcy.2016.05.136

[19] C. Tejada-Tovar, A. Villabona-Ortiz, A. D. Gonzalez-Delgado, E. Marrugo-Cantillo, M. Pajaro-Montero, “Effect of bed height and biomass array on removal of an anion surfactant using a continuous rapid-mixed biofilter,” Contemporary Engineering Sciences, vol. 11, no. 7, pp. 297-305, 2018. https://doi.org/10.12988/ces.2018.8227

[20] V. A. Kolesnikov, V. I. Il’in, A. V. Kolesnikov, “Electroflotation in Wastewater Treatment from Oil Products, Dyes, Surfactants, Ligands, and Biological Pollutants: A Review,” Theoretical Foundations of Chemical Engineering., vol. 53, no. 2, pp. 251-273, 2019. https://doi.org/10.1134/S0040579519010093

[21] A. Dimoglo, P. Sevim-Elibol, Dinç, K. Gökmen, H. Erdoğan, “Electrocoagulation/electroflotation as a combined process for the laundry wastewater purification and reuse,” Journal of Water Process Engineering, vol. 31, e100877, 2019. https://doi.org/10.1016/j.jwpe.2019.100877

[22] Z. B. Gönder, G. Balcıoğlu, Y. Kaya, I. Vergili, “Treatment of carwash wastewater by electrocoagulation using Ti electrode: optimization of the operating parameters,” International Journal of Environmental Science and Technology, vol. 16, no. 12, pp. 8041-8052, 2019. https://doi.org/10.1007/s13762-019-02413-4

[23] E. K. Maher, K. N. O'Malley, J. Heffron, J. Huo, Y. Wang, B. K. Mayer, P. J. McNamara, “Removal of estrogenic compounds: Via iron electrocoagulation: Impact of water quality and assessment of removal mechanisms,” Environmental Science: Water Research & Technology, vol. 5, no. 5, pp. 956-966, 2019. https://doi.org/10.1039/c9ew00087a

[24] A. K. Verma, “Treatment of textile wastewaters by electrocoagulation employing Fe-Al composite electrode,” Journal of Water Process Engineering, vol. 20, pp. 168-172, 2017. https://doi.org/10.1016/j.jwpe.2017.11.001

[25] M. Yoosefian, S. Ahmadzadeh, M. Aghasi, M. Dolatabadi, “Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption,” Journal of Molecular Liquids, vol. 225, pp. 544-553, 2017. https://doi.org/10.1016/j.molliq.2016.11.093

[26] I. Moulood, B. A. Abdul-Majeed, “Treatment of Simulated Carwash Wastewater by Electrocoagulation with Sonic Energy,” Journal of Engineering, vol. 25, no. 9, pp. 30-40, 2019. https://doi.org/10.31026/j.eng.2019.09.3

[27] E. Nariyan, A. Aghababaei, M. Sillanpää, “Removal of pharmaceutical from water with an electrocoagulation process; effect of various parameters and studies of isotherm and kinetic,” Separation and Purification Technology, vol. 188, pp. 266-281, 2017. https://doi.org/10.1016/j.seppur.2017.07.031

[28] M. S. Ramya Sankar, V. Sivasubramanian, E. V. V. Vijay, M. Jerold, J. Kanimozhi, P. Sinu, N. Shankar, “Kinetic, isothermal and thermodynamic investigation on electrocoagulation of congo red dye removal from synthetic wastewater using aluminium electrodes,” Desalination and Water Treatment, vol. 122, pp. 399-350, 2018. http://doi.org/10.5004/dwt.2018.23082

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.