Optimization of the Effect of Temperature and Bed Height on Cr (VI) Bioadsorption in Continuous System

Main Article Content


Angel Villabona-Ortíz, M.Sc. https://orcid.org/0000-0001-8488-1076
Candelaria Tejada-Tovar, M.Sc. https://orcid.org/0000-0002-2323-1544
Erika Ruiz-Paternina
Jesús David Frías-González
Gerlyn David Blanco-García


In the present paper, the residues of the plantain starch extraction process are proposed as an adsorbent to remove Cr (VI) in a continuous fixed bed-system, varying the temperature in 33, 40, 55, 70 y 76 °C and bed height
in the range of 15.5, 30, 65, 100, 114.5 mm. The adsorbent material was characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray Diffraction Analysis (XRD). The Cr (VI) solution at 100 ppm had contact with the column by gravity, with a flow rate of 0.75 mL/s at the different working conditions. At the end of the process, the residual concentration of the metal was measured by UV-Vis spectroscopy using the standard method for the determination of Cr (VI) in water ASTM D1687-17. From the results, it was established that the bioadsorbent has the presence of hydroxyl, carboxyl and methyl functional groups and that the adsorption process is controlled by electrostatic interactions; the variables evaluated had a significant influence on the process because applying the RSM methodology it was observed that the optimal operating conditions are 81.49 mm of bed height and temperature of 68 ºC. Based on the behavior of the rupture curve, it was found that the bio-material has the potential to be used as a filler in an adsorption column with the purpose of remove Cr (VI).


Article Details


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.

Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.

The authors who publish in this Journal accept the following conditions:

a. The authors retain the copyright and transfer the right of the first publication to the journal, with the work registered under the Creative Commons attribution license, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this Journal.

b. Authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly indicate that the work It was first published in this Journal.

c. Authors are allowed and recommended to publish their work on the Internet (for example on institutional or personal pages) before and during the process.
review and publication, as it can lead to productive exchanges and a greater and faster dissemination of published work.

d. The Journal authorizes the total or partial reproduction of the content of the publication, as long as the source is cited, that is, the name of the Journal, name of the author (s), year, volume, publication number and pages of the article.

e. The ideas and statements issued by the authors are their responsibility and in no case bind the Journal.


[1] M. O. Borna, M. Pirsaheb, M. V. Niri, R. K. Mashizie, B. Kakavandi, M. R. Zare, and A. Asadi, “Batch and column studies for the adsorption of chromium(VI) on low-cost Hibiscus Cannabinus kenaf, a green adsorbent,” Journal of the Taiwan Institute of Chemical Engineers, vol. 68, pp. 80-89, 2016. https://doi.org/10.1016/j.jtice.2016.09.022

[2] C. Tejada-Tovar, Á. Villabona-Ortiz, and M. Jiménez-Villadiego, “Remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente,” Revista U.D.C.A. Actualidad & Divulgación Científica, vol. 10 (1), pp. 139-147, 2017. https://doi.org/10.31910/rudca.v20.n1.2017.71

[3] C. Tejada-Tovar, A. Villabona-Ortiz, and E. Ruiz-Paternina, “Cinética de adsorción de Cr (VI) usando biomasas residuales modificadas químicamente en sistemas por lotes y continuo,” Revista Ion, vol. 28 (1), pp. 29-41, 2015.

[4] M. Manjuladevi, R. Anitha, and S. Manonmani, “Kinetic study on adsorption of Cr (VI), Ni (II), Cd (II) and Pb (II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel,” Applied Water Science, vol. 8, e36, 2018. https://doi.org/10.1007/s13201-018-0674-1

[5] Ş. Parlayici and E. Pehlivan, “Comparative study of Cr (VI) removal by bio-waste adsorbents: equilibrium, kinetics, and thermodynamic,” Journal of Analytical Science and Technology, vol. 10, e15, 2019. https://doi.org/10.1186/s40543-019-0175-3

[6] D. L. Gómez-Aguilar, J. P. Rodríguez-Miranda, J. A. Esteban-Muñóz, and J. F. Betancur, “Coffee Pulp: A Sustainable Alternative Removal of Cr (VI) in Wastewaters. Processes,” Processes, vol. 7 (7), e403, 2019. https://doi.org/10.3390/pr7070403

[7] M. Akram, H. N. Bhatti, M. Iqbal, S. Noreen, and S. Sadaf, “Biocomposite efficiency for Cr(VI) adsorption: Kinetic, equilibrium and thermodynamics studies,” Journal of Environmental Chemical Engineering, vol. 5 (1), pp. 400-411, 2017. https://doi.org/10.1016/j.jece.2016.12.002

[8] A. Abdolali, H. H. Ngo, W. Guo, J. L. Zhou, J. Zhang, S. Liang, S. W. Chang, D. D. Nguyen, Y. Liu, “Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column,” Bioresource Technology, vol. 229, pp. 78-87, 2017. https://doi.org/10.1016/j.biortech.2017.01.016

[9] Y. Yi, J. Lv, Y. Liu, and G. Wu, “Synthesis and application of modified Litchi peel for removal of hexavalent chromium from aqueous solutions,” Journal of Molecular Liquids, vol. 225, pp. 28-33, 2017. https://doi.org/10.1016/j.molliq.2016.10.140

[10] A. Kumar, A. Balouch, A. A. Pathan, A. M. Mahar, M. S. Jagirani, F. A. Mustafai, M. Zubair, B. Laghari, and P. Panah, “Remediation techniques applied for aqueous system contaminated by toxic Chromium and Nickel ion,” Geology, Ecology, and Landscapes, vol. 1 (2), pp. 143-153, 2017. https://doi.org/10.1080/24749508.2017.1332860

[11] M. Nigam, S. Rajoriya, S. R. Singh, and P. Kumar, “Adsorption of Cr (VI) Ion from Tannery Wastewater on Tea Waste: Kinetics, Equilibrium and Thermodynamics Studies,” Journal of Environmental Chemical Engineering, vol. 7 (3), e103188, 2019. https://doi.org/10.1016/j.jece.2019.103188

[12] R. M. Naik, S. Ratan, and I. Singh, “Use of orange peel as an adsorbent for the removal of Cr (VI) from its aqueous solution,” Indian Journal of Chemical Technology, vol. 25 (3), pp. 300-305, 2018.

[13] N. K. Mondal, A. Samanta, S. Chakraborty, and W. A. Shaikh, “Enhanced chromium (VI) removal using banana peel dust: isotherms , kinetics and thermodynamics study,” Sustainable Water Resources Management, vol. 4, pp. 489-497, 2017. https://doi.org/10.1007/s40899-017-0130-7

[14] O. M. Rodriguez-Narvaez, J. M. Peralta-Hernandez, A. Goonetilleke, and E. R. Bandala, “Treatment technologies for emerging contaminants in water: A review,” Chemical Engineering Journal, vol. 323, pp. 361-380, 2017. https://doi.org/10.1016/j.cej.2017.04.106

[15] A. Villabona-Ortíz, C. Tejada-Tovar, and R. Ortega-Toro, “Modelling of the adsorption kinetics of Chromium (VI) using waste biomaterials,” Revista Mexicana de Ingeniería Química, vol. 19 (1), pp. 401-408, 2019. https://doi.org/10.24275/rmiq/IA650

[16] F. K. Al-Jubory, I. M. Mujtaba, and A. S. Abbas, “Preparation and characterization of biodegradable crosslinked starch ester as adsorbent,” AIP Conference Proceedings, vol. 2213, e020165, 2020. https://doi.org/10.1063/5.0000170

[17] J. C. Lucas, V. D. Quintero, and C. A. C. Valencia, “Caracterización de harina y almidón obtenidos a partir de plátano guineo AAAea (Musa sapientum L.),” Acta Agronómica, vol. 62 (2), pp. 83-96, 2013.

[18] B. C. Maniglia, and D. R. Tapia-Blácido, “Isolation and characterization of starch from babassu mesocarp,” Food Hydrocolloids, vol. 55, pp. 47-55, 2016. https://doi.org/10.1016/j.foodhyd.2015.11.001

[19] C. Tejada-Tovar, A. Herrera-Barros, and A. Villabona-Ortíz, “Assessment of Chemically Modified Lignocellulose Waste for the Adsorption of Cr (VI),” Revista Facultad de Ingeniería, vol. 29 (54), e10298, 2020. https://doi.org/10.19053/01211129.v29.n54.2020.10298

[20] X. Luo, Y. Cai, L. Liu, and J. Zeng, “Cr (VI) adsorption performance and mechanism of an effective activated carbon prepared from bagasse with a one-step pyrolysis and ZnCl2 activation method,” Cellulose, vol. 26, pp. 4921-4934, 2019. https://doi.org/10.1007/s10570-019-02418-9

[21] C. Tejada-Tovar, A. Gonzalez-Delgado, and A. Villabona-Ortiz, “Characterization of Residual Biomasses and Its Application for the Removal of Lead Ions from Aqueous Solution,” Applied Sciences, vol. 9 (21), e4486, 2019. https://doi.org/10.3390/app9214486

[22] J. Long, X. Huang, X. Fan, Y. Peng, and J. Xia, “Effective adsorption of nickel (II) with Ulva lactuca dried biomass: isotherms, kinetics and mechanisms,” Water Science & Technology, vol. 78 (1), pp. 156-164, 2018. https://doi.org/10.2166/wst.2018.253

[23] S. M. Batagarawa and A. K. Ajibola, “Comparative evaluation for the adsorption of toxic heavy metals on to millet, corn and rice husks as adsorbents,” Journal of Analytical & Pharmaceutical Research, vol. 8 (3), pp. 119-125, 2019. https://doi.org/10.15406/japlr.2019.08.00325

[24] L. A. Romero-Cano, H. García-Rosero, L. V. Gonzalez-Gutierrez, L. A. Baldenegro-Pérez, and F. Carrasco-Marín, “Functionalized adsorbents prepared from fruit peels: Equilibrium, kinetic and thermodynamic studies for copper adsorption in aqueous solution,” Journal of Cleaner Production, vol. 162, pp. 195-204, 2017. https://doi.org/10.1016/j.jclepro.2017.06.032

[25] E. Rodrigues, O. Almeida, H. Brasil, D. Moraes, and M. A. L. Reis, “Adsorption of chromium (VI) on hydrotalcite-hydroxyapatite material doped with carbon nanotubes : Equilibrium , kinetic and thermodynamic study,” Applied Clay Science, vol. 172, pp. 57-64, 2019. https://doi.org/10.1016/j.clay.2019.02.018

[26] N. M. A. Al-Lagtah, A. H. Al-Muhtaseb, M. N. M. Ahmad, and Y. Salameh, “Chemical and physical characteristics of optimal synthesised activated carbons from grass-derived sulfonated lignin versus commercial activated carbons,” Microporous and Mesoporous Materials, vol. 225, pp. 504-514, 2016. https://doi.org/10.1016/j.micromeso.2016.01.043

[27] N. A. Medellín-Castillo, M. G. Hernández-Ramírez, J. J. Salazar-Rábago, G. J. Labrada-Delgado, and A. Aragón-Piña, “Bioadsorción de Plomo (II) presente en solución acuosa sobre residuos de fibras naturales procedentes de la industria ixtlera (Agave lechuguilla Torr.Y Yucca carnerosana (Trel.) McKelvey),” Revista Internacional de Contaminación Ambiental, vol. 33 (2), pp. 269-280, 2017. https://doi.org/10.20937/rica.2017.33.02.08

[28] Y. Chen, D. An, S. Sun, J. Gao, and L. Qian, “Reduction and removal of chromium VI in water by powdered activated carbon,” Materials, vol. 11 (2), e269, 2018. https://doi.org/10.3390/ma11020269

[29] W. Cherdchoo, S. Nithettham, and J. Charoenpanich, “Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea,” Chemosphere, vol. 221, pp. 758-767, 2019. https://doi.org/10.1016/j.chemosphere.2019.01.100

[30] C. Lin, W. Luo, T. Luo, Q. Zhou, H. Li, and L. Jing, “A study on adsorption of Cr (VI) by modified rice straw: Characteristics, performances and mechanism,” Journal of Cleaner Production, vol. 196, pp. 626-634, 2018. https://doi.org/10.1016/j.jclepro.2018.05.279

[31] Q. Gao, J. Hua, R. Li, Z. Xing, L. Panga, M. Zhang, L. Xu, G. Wu, “Radiation-induced graft polymerization for the preparation of a highly efficient UHMWPE fibrous adsorbent for Cr(VI) removal,” Radiation Physics and Chemistry, vol. 130, pp. 92-102, 2017. https://doi.org/10.1016/j.radphyschem.2016.08.004

[32] I. A. Aguayo-Villarreal, A. Bonilla-Petriciolet, and R. Muñiz-Valencia, “Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions,” Journal of Molecular Liquids, vol. 230, pp. 686-695, 2017. https://doi.org/10.1016/j.molliq.2017.01.039

[33] H. N. Tran, D. T. Nguyen, G. T. Le, F. Tomul, E. C. Lima, S. H. Woo, A. K. Sarmah, H. Q. Nguyen, P. T. Nguyen, D. D. Nguyen, T. V. Nguyen, S. Vigneswaran, D. N. Vo, and H. P. Chao, “Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review,” Journal of Hazardous Materials, vol. 373, pp. 258-270, 2019. https://doi.org/10.1016/j.jhazmat.2019.03.018

[34] M. C. Corral-Escárcega, M. G. Ruiz-Gutiérrez, A. Quintero-Ramos, C. O. Meléndez-Pizarro, D. Lardizabal-Gutiérrez, and K. Campos-Venegas, “Use of biomass-derived from pecan nut husks (Carya illinoinensis) for chromium removal from aqueous solutions. column modeling and adsorption kinetics studies,” Revista Mexicana de Ingeniería Quimíca, vol. 16 (3), pp. 939-953, 2017.

[35] L. Zhou, Y. Liu, S. Liu, Y. Yin, G. Zeng, X. Tan, X. Hu, X. Hu, L. Jiang, Y. Ding, S. Liu, and X. Huang, “Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures,” Bioresource Technology, vol. 218, pp. 351-359, 2016. https://doi.org/10.1016/j.biortech.2016.06.102

[36] C. Tejada-Tovar, Á. Villabona-Ortíz, J. Paternina-Cuesta, V. Caballero-Romero, and C. Granados-Conde, “Optimización de parámetros para la construcción de la curva de ruptura en la adsorción de Cr(VI) sobre cáscara de cacao,” Revista U.D.C.A. Actualidad & Divulgación Científica, vol. 21 (1), pp. 167-177, 2018. https://doi.org/10.31910/rudca.v21.n1.2018.675

[37] C. Tejada-Tovar, A. Villabona-Ortiz, A. Cabarcas, C. Benitez, and D. Acevedo, “Optimization of variables in fixed-bed column using the response surface methodology,” Contemporary Engineering Sciences, vol. 11 (23), pp. 1121-1133, 2018. https://doi.org/10.12988/ces.2018.83101

[38] H. Haroon, T. Ashfaq, S. Mubashar, H. Gardazi, T. A. Sherazi, M. Ali, N. Rashid, and M. Bilal, “Equilibrium kinetic and thermodynamic studies of Cr(VI) adsorption onto a novel adsorbent of Eucalyptus camaldulensis waste: Batch and column reactors,” Korean Journal of Chemical Engineering, vol. 33, pp. 2898-2907, 2016. https://doi.org/10.1007/s11814-016-0160-0

[39] P. S. Blanes, M. E.Bordoni, J. C. González, S. I. García, A. M. Atria, L. F. Sala, and S. E. Bellú, “Application of soy hull biomass in removal of Cr(VI) from contaminated waters. Kinetic, thermodynamic and continuous sorption studies,” Journal of Environmental Chemical Engineering, vol. 4 (1), pp. 516-526, 2016. https://doi.org/10.1016/j.jece.2015.12.008

[40] V. Manirethan, N. Gupta, R. M. Balakrishnan, and K. Raval, “Batch and continuous studies on the removal of heavy metals from aqueous solution using biosynthesised melanin-coated PVDF membranes,” Environmental Science and Pollution Research, 2019. https://doi.org/10.1007/s11356-019-06310-8

[41] V. Manirethan, K. Raval, R. Rajan, H. Thaira, and R. M. Balakrishnan, “Kinetic and thermodynamic studies on the adsorption of heavy metals from aqueous solution by melanin nanopigment obtained from marine source : Pseudomonas stutzeri,” Journal of Environmental Management, vol. 214, pp. 315-324, 2018. https://doi.org/10.1016/j.jenvman.2018.02.084

[42] A. Mishra, B. Dutt, and A. Kumar, “Packed-bed column biosorption of chromium (VI) and nickel (II) onto Fenton modified Hydrilla verticillata dried biomass,” Ecotoxicology and Environmental Safety, vol. 132, pp. 420-428, 2016. https://doi.org/10.1016/j.ecoenv.2016.06.026

[43] S. Rangabhashiyam, and P. Balasubramanian, “Performance of novel biosorbents prepared using native and NaOH treated Peltophorum pterocarpum fruit shells for the removal of malachite green,” Bioresource Technology Reports, vol. 3, pp. 75-81, 2018. https://doi.org/10.1016/j.biteb.2018.06.004

[44] J. L. Gong, Y.-L. Zhang, Y. Jiang, G.-M. Zeng, Z.-H. Cui, K. Liu, C.-H. Deng, Q.-Y. Niu, J.-H. Deng, and S.-Y. Huan, “Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column,” Applied Surface Science, vol. 330, pp. 148-157, 2015. https://doi.org/10.1016/j.apsusc.2014.11.068

[45] S. Rangabhashiyam, and N. Selvaraju, “Adsorptive remediation of hexavalent chromium from synthetic wastewater by a natural and ZnCl2 activated Sterculia guttata shell,” Journal of Molecular Liquids, vol. 207, pp. 39-49, 2015. https://doi.org/10.1016/j.molliq.2015.03.018

[46] K. H. Chu, “Breakthrough curve analysis by simplistic models of fixed bed adsorption: In defense of the century-old Bohart-Adams model,” Chemical Engineering Journal, vol. 380, e122513, 2020. https://doi.org/10.1016/j.cej.2019.122513

[47] N. Nordin, N. A. A. Asmadi, M. K. Manikam, A. A. Halim, M. M. Hanafiah, and S. N. Hurairah, “Removal of Hexavalent Chromium from Aqueous Solution by Adsorption on Palm Oil Fuel Ash (POFA),” Journal of Geoscience and Environment Protection, vol. 8 (2), pp. 112-127, 2020. https://doi.org/10.4236/gep.2020.82008

[48] S. Muthusaravanan, N. Sivarajasekar, J. S. Vivek, T. Paramasivan, M. Naushad, J. Prakashmaran, V. Gayathri, and O. K. Al-Duaij, “Phytoremediation of heavy metals: mechanisms, methods and enhancements,” Environmental Chemistry Letters, vol. 16, pp. 1339-1359, 2018. https://doi.org/10.1007/s10311-018-0762-3

[49] A. L. Arim, K. Neves, M. J. Quina, and L. M. Gando-Ferreira, “Experimental and mathematical modelling of Cr(III) sorption in fixed-bed column using modified pine bark,” Journal of Cleaner Production, vol. 183 (3), pp. 272-281, 2018. https://doi.org/10.1016/j.jclepro.2018.02.094

[50] M. Banerjee, N. Bar, R. K. Basu, and S. K. Das, “Removal of Cr(VI) from Its Aqueous Solution Using Green Adsorbent Pistachio Shell: a Fixed Bed Column Study and GA-ANN Modeling,” Water Conservation Science and Engineering, vol. 3, pp. 19-31, 2018. https://doi.org/10.1007/s41101-017-0039-x


Download data is not yet available.

Most read articles by the same author(s)