Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Beneficio de la resistencia de la enmienda al aserrín / ceniza de madera en la estabilización de cemento de un suelo expansivo

Resumen

La investigación evaluó los beneficios de resistencia obtenidos al modificar la estabilización del cemento de un suelo expansivo mediante el uso de cenizas de polvo de sierra (SDA), un residuo generado en las industrias de molienda de madera debido a la quema. El programa experimental consistió en la preparación de muestras cilíndricas de tamaño 38 mm x 76 mm para evaluar la resistencia a la compresión no confinada (UCS) del cemento estabilizado y las muestras modificadas curadas por períodos variables de 2 horas, 7, 14 y 28 días. Se adoptaron dos contenidos de cemento de 2% y 6% en peso de suelo para estabilizar el suelo. Las muestras estabilizadas de cemento modificadas por SDA adoptaron contenidos de SDA del 5%, 10% y 20% en peso del suelo. Las tendencias de aumento de la fuerza para las muestras modificadas también se ajustaron en función de los resultados de las pruebas de UCS. Con el fin de analizar los beneficios en el diseño del pavimento y la reducción del espesor, los valores de UCS se usaron para predecir el valor CBR de los especímenes en base a los cuales se calculó la reducción del espesor del pavimento para diferentes densidades de tráfico. La investigación reveló que la enmienda 5% SDA de la estabilización del cemento puede dar como resultado un aumento de hasta el 26% en la resistencia temprana y un aumento del 20% en la resistencia retardada. Según los valores de CBR previstos, el grosor del pavimento se puede reducir hasta el 8.3%.

Palabras clave

caminos, ceniza, material de desecho, resistencia, suelo

PDF (English) XML (English) FLIP (English)

Referencias

[1] A. Sabat, and S. Pati, “A Review of Literature on Stabilization of Expansive Soil Using Solid Wastes,” Electron. J. Geotech. Eng., vol. 19, pp. 6251-6267, 2014.

[2] J. James, and P. K. Pandian, “Soil Stabilization as an Avenue for Reuse of Solid Wastes : A Review,” Acta Tech. Napocensis Civ. Eng. Arch., vol. 58 (1), pp. 50-76, 2015.

[3] H. Karim, M. Al-Recaby, and M. Nsaif, “Stabilization of soft clayey soils with sawdust ashes,” MATEC Web Conf., vol. 162 (01006), pp. 1-7, 2018. DOI: https://doi.org/10.1051/matecconf/201816201006.

[4] W. A. Butt, K. Gupta, and J. N. Jha, “Strength behavior of clayey soil stabilized with saw dust ash,” Geo-Engineering, vol. 7 (1), p. 18, Dec. 2016. DOI: https://doi.org/10.1186/s40703-016-0032-9.

[5] T. H. T. Ogunribido, “Geotechnical Properties of Saw Dust Ash Stabilized Southwestern Nigeria Lateritic Soils,” Environ. Res. Eng. Manag., vol. 2 (60), pp. 29-33, 2012. DOI: https://doi.org/10.5755/j01.erem.60.2.986.

[6] G. R. Otoko, and B. K. Honest, “Stabilization of Nigerian Deltaic Laterites with Sawdust Ash,” Int. J. Sci. Res. Manag., vol. 2 (8), pp. 1287-1292, 2014.

[7] A. O. Ilori, “Investigation of Geotechnical Properties of a Lateritic Soil with Sawdust Ash,” IOSR J. Mech. Civ. Eng., vol. 12 (1), pp. 11-14, 2015.

[8] S. Khan, and H. Khan, “Improvement of mechanical properties by waste sawdust ash addition into soil,” Electron. J. Geotech. Eng., vol. 20 (7), pp. 1901-1914, 2015.

[9] B. D. Nath, G. Sarkar, S. Siddiqua, and R. Islam, “Geotechnical Properties of Wood Ash-Based Composite Fine-Grained Soil,” Hindawi, vol. 2018, p. 7, 2018. DOI: https://doi.org/10.1155/2018/9456019.

[10] E. Kufre, C. Chijioke, E. Edidiong, and C. Imoh, “Influence of Sawdust Disposal on the Geotechnical Properties of Soil,” Electron. J. Geotech. Eng., vol. 22 (12), pp. 4769-4780, 2017.

[11] A. Venkatesh, and G. S. Reddy, “Effect Of Waste Saw Dust Ash On Compaction And Permeability Properties Of Black Cotton Soil,” Int. J. Civ. Eng. Res., vol. 7 (1), pp. 27-32, 2016.

[12] E. A. Okunade, “The Effect of Wood Ash and Sawdust Admixtures on the Engineering Properties of Burnt Laterite Clay Brick,” J of Applied Science, vol. 8 (6), pp. 1042-1048, Jan. 2008. DOI: https://doi.org/10.3923/jas.2008.1042.1048.

[13] J. E. Edeh, I. O. Agbede, and A. Tyoyila, “Evaluation of Sawdust Ash – Stabilized Lateritic Soil as Highway Pavement Material,” J. Mater. Civ. Eng., vol. 26 (2), pp. 367-373, Feb. 2014. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000795.

[14] K. J. Osinubi, J. E. Edeh, and W. O. Onoja, “Sawdust Ash Stabilization of Reclaimed Asphalt Pavement,” J. ASTM Int., vol. 9 (2), pp. 1-10, 2011.

[15] A. A. Raheem, B. S. Olasunkanmi, and C. S. Folorunso, “Saw Dust Ash as Partial Replacement for Cement in Concrete,” Organ. Technol. Manag. Constr. An Int. J., vol. 4 (2), pp. 474-480, 2012.

[16] D. N. Little, “Handbook for Stabilization of Pavement Subgrades and Base Courses with Lime,” Austin, Texas, 1995.

[17] J. James and P. K. Pandian, “Industrial Wastes as Auxiliary Additives to Cement / Lime Stabilization of Soils,” Adv. Civ. Eng., vol. 2016, Article ID 1267391, pp. 1-17, 2016.

[18] K. D. Rao, M. Anusha, P. R. T. Pranav, and G. Venkatesh, “A Laboratory Study on the Stabilization of Marine Clay Using Saw Dust and Lime,” Ijesat] Int. J. Eng. Sci. Adv. Technol., vol. 2 (4), pp. 851-862, 2012.

[19] E. S. Nnochiri, H. O. Emeka, and M. Tanimola, “Geotechnical Characteristics of Lateritic Soil Stabilized With Sawdust Ash-Lime Mixtures,” Stavební Obz. - Civ. Eng. J., vol. 26 (1), pp. 66-76, 2017.

[20] Z. Z. Shawl, V. Praksh, and V. Kumar, “Use of Lime and Saw Dust Ash in Soil,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 6 (2), pp. 1682-1689, 2017.

[21] S. T. Tyagher, J. T. Utsev, and T. Adagba, “Suitability of Saw Dust Ash-Lime Mixture for Production of Sandcrete Hollow Blocks,” Niger. J. Technol., vol. 30 (1), pp. 1-6, 2011.

[22] A. J. Gana, and J. B. Tabat, “Stabilization of Clay Soil with Cement and Sawdust,” CARD Int. J. Eng. Emerg. Sci. Discov., vol. 2 (3), pp. 1-27, 2017.

[23] H. I. Owamah, E. Atikpo, O. E. Oluwatuyi, and A. M. Oluwatomisin, “Geotechnical Properties of Clayey Soil Stabilized with Cement-Sawdust Ash for Highway Construction,” J. Appl. Sci. Environ. Manag., vol. 21, no. 7, pp. 1378–1381, 2017.

[24] BIS, IS 2720 Methods of Test for Soils:Part 5 Determination of Liquid and Plastic Limit. India, 1985, pp. 1-16.

[25] BIS, IS 2720 Methods of Test for Soils:Part 6 Determination of Shrinkage Factors. India, 1972, pp. 1-12.

[26] BIS, IS 2720 Methods of Test for Soils Part 3:Determination of Specific Gravity/Section 1 Fine Grained Soils. India, 1980, pp. 1-8.

[27] BIS, IS 2720 Methods of Test for Soils:Part 7 Determination of Water Content-Dry Density Relation Using Light Compaction. India, 1980, pp. 1-9.

[28] BIS, IS 2720 Methods of Test for Soils:Part 10 - Determination of Unconfined Compressive Strength. India, 1991, pp. 1-4.

[29] BIS, IS 2720 Methods of Test for Soils:Part 40 Determination of Free Swell Index of Soils. India, 1977, pp. 1-5.

[30] BIS, IS 1498 Classification and Identification of Soils for General Engineering Purposes. India, 1970, pp. 4-24.

[31] Transport Research Laboratory, “Literature Review:Stabilised Sub-Bases for Heavily Trafficked Roads,” 2003. [Online]. Available: https://www.gov.uk/dfid-research-outputs/literature-review-stabilised-sub-bases-for-heavily-trafficked-roads.

[32] J. James, P. K. Pandian, K. Deepika, J. M. Venkatesh, V. Manikandan, and P. Manikumaran, “Cement Stabilized Soil Blocks Admixed with Sugarcane Bagasse Ash,” Journal of Engineering, vol. 2016, pp. 1-9, 2016. DOI: https://doi.org/10.1155/2016/7940239.

[33] M. Kharun, and A. P. Svintsov, “Soil-cement ratio and curing conditions as the factors of soil-concrete strength,” KEM, vol. 730, pp. 358-363, Feb. 2017. DOI: https://doi.org/10.4028/www.scientific.net/KEM.730.358.

[34] J. James, and P. K. Pandian, “A Study on the Early UCC Strength of Stabilized Soil Admixed with Industrial Waste Materials,” Int. J. Earth Sci. Eng., vol. 7 (3), pp. 1055-1063, 2014.

[35] S. Saride, A. J. Puppala, and S. R. Chikyala, “Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays,” Applied Clay Science, vol. 85, pp. 39-45, Nov. 2013. DOI: https://doi.org/10.1016/j.clay.2013.09.008.

[36] E. A. Basha, R. Hashim, H. B. Mahmud, and A. S. Muntohar, “Stabilization of residual soil with rice husk ash and cement,” Construction and Building Materials, vol. 19 (6), pp. 448-453, Jul. 2005. DOI: https://doi.org/10.1016/j.conbuildmat.2004.08.001.

[37] S. Chowdhury, M. Mishra, and O. Suganya, “The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: An overview,” Ain Shams Engeneering Journal, vol. 6 (2), pp. 429-437, Jun. 2015. DOI: https://doi.org/10.1016/j.asej.2014.11.005.

[38] F. Meulenkamp, and M. A. Grima, “Application of neural networks for the prediction of the UCS from Equotip hardness,” International Journal of Rock Mechanics and Mining Sciences, vol. 36 (1), pp. 29-39, Jan. 1999. DOI: https://doi.org/10.1016/S0148-9062(98)00173-9.

[39] A. K. Sabat, “Statistical Models for Prediction of Swelling Pressure of a Stabilized Expansive Soil,” Electron. J. Geotech. Eng., vol. 17, pp. 837-846, 2012.

[40] M. Tao, and Z. Zhang, “Enhanced Performance of Stabilized By-Product Gypsum,” J. Mater. Civ. Eng., vol. 17 (6), pp. 617-623, Dec. 2005. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2005)17:6(617).

[41] Y. Xizhong, L. Shudong, and C. Wei, “Silt Subgrade Modification and Stabilization with Ground Granulated Blast Furnace Slag and Carbide Lime in Areas with a Recurring High Groundwater,” in Proceedings of International Conference on Mechanic Automation and Control Engineering, 2010, pp. 2063-2067.

[42] P. V. Sivapullaiah, and A. K. Jha, “Gypsum Induced Strength Behaviour of Fly Ash-Lime Stabilized Expansive Soil,” Geotech. Geol. Eng., vol. 32 (5), pp. 1261-1273, Oct. 2014. DOI: https://doi.org/10.1007/s10706-014-9799-7.

[43] J. James, and P. K. Pandian, “Role of Phosphogypsum and Ceramic Dust in Amending the Early Strength Development of a Lime Stabilized Expansive Soil,” Int. J. Sustain. Constr. Eng. Technol., vol. 7 (2), pp. 38-49, 2016.

[44] S. M. Al-zaidyeen, and A. N. S. Al-qadi, “Effect of Phosphogypsum As a Waste Material in Soil Stabilization of Pavement Layers,” Jordan J. Civ. Eng., vol. 9 (1), pp. 1-7, 2015.

[45] J. James, and P. K. Pandian, “Development of Early Strength of Lime Stabilized Expansive Soil: Effect of Red Mud and Egg Shell Ash,” Acta Tech. Corviniensis - Bull. Eng., vol. 9 (1), pp. 93-100, 2016.

[46] Z. Wang, X. Si-fa, and W. Guo-cai, “Study of Early Strength and Shrinkage Properties of Cement or Lime Solidified Soil,” Energy Procedia, vol. 16, pp. 302-306, Jan. 2012. DOI: https://doi.org/10.1016/j.egypro.2012.01.050.

[47] J. James, and P. Kasinatha Pandian, “Bagasse Ash as an Auxiliary Additive to Lime Stabilization of an Expansive Soil: Strength and Microstructural Investigation,” Adv. Civ. Eng., vol. 2018, 2018.

[48] S. A. Lima, H. Varum, A. Sales, and V. F. Neto, “Analysis of the mechanical properties of compressed earth block masonry using the sugarcane bagasse ash,” Construction and Building Materials, vol. 35, pp. 829-837, Oct. 2012. DOI: https://doi.org/10.1016/j.conbuildmat.2012.04.127.

[49] V. Greepala, and R. Parichartpreecha, “Effects of Using Flyash, Rice Husk Ash and Bagasse Ash as Replacement Materials on the Compressive Strength and Water Absorption of Lateritic Soil-Cement Interlocking Blocks,” in Proceedings of 9th Australasian Masonry Conference, 2011, pp. 583-603.

[50] S. Bhuvaneshwari, R. G. Robinson, and S. R. Gandhi, “Behaviour of Lime Treated Cured Expansive Soil Composites,” Indian Geotech. J., vol. 44 (3), pp. 278-293, Sep. 2014. DOI: https://doi.org/10.1007/s40098-013-0081-3.

[51] C. A. O’Flaherty, H. T. David, and D. T. Davidson, “Relationship Between the California Bearing Ratio and the Unconfined Compressive Strength of Sand-Cement Mixtures,” Proc. Iowa Acad. Sci., vol. 68 (1), pp. 341–356, 1961.

[52] O. F. Usluogullari, and C. Vipulanandan, “Stress-Strain Behavior and California Bearing Ratio of Artificially Cemented Sand,” J. Test. Eval., vol. 39 (4), p. 103165, 2011. DOI: https://doi.org/10.1520/JTE103165.

[53] A. Singh, Soil Engineering in Theory and Practice. Bombay, India: Asia Publishing House, 1967.

[54] S. Vijay, “Stress-strain and penetration characteristics of clay modified with crumb rubber,” Revista Facultad de Ingeniería, vol. 28 (49), pp. 65-75, 2018. DOI: https://doi.org/10.19053/01211129.v28.n49.2018.8745.

[55] Indian Roads Congress, IRC 37: Guidelines for the design of flexible pavements, no. July. New Delhi, India, 2012, pp. 1-104.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a