Skip to main navigation menu Skip to main content Skip to site footer

Chronostratigraphy of the Aburrá Valley, in Colombia: A review

Abstract

The Aburrá Valley (VA), located in the Central Cordillera of Colombia, is covered by extensive surface formations of various types. These deposits record the morphodynamic response of different tectonic and erosive processes, controlled by humid tropical climatic conditions and recent geodynamic activity of the Northern Andes. This contribution presents a review of the state of the art of the chronostratigraphy of the surface formations of the VA, as a tool to quantify the geomorphological processes responsible for the conformation and evolution of the VA. The compiled data cover an interval
from the late Pliocene to the late Holocene, recording the response of the landscape to the last phase of the Andean Orogeny. This review highlights the need to produce new chronological and stratigraphic data in the Quaternary, as a basis for understanding landscape evolution models, and hence procure a coherent approach to hazard assessment studies, risk management strategies and land use planning, particularly in the context of large urban centers of the Andean region.

Keywords

Medellín-Porce River, Surficial formations, Hillslope deposits, Quaternary geochronology, Central Mountain, Colombian Andes

PDF (Español)

Author Biography

Santiago Noriega-Londoño

Ingeniero geólogo, candidato a doctor en Ciencias de la Tierra. Universidad EAFIT.

Mateo Arboleda-Giraldo

Geólogo, Estudiante de maestría en ciencias de la tierra, Universidad EAFIT.

Sergio A. Restrepo-Moreno

Geólogo, Universidad Nacional de Colombia (1994). PhD Geología Geografía University of Florida - USA (2009). Posdoctorado Smithsonian Institution - USA (2010-2011). Postdoctorado National Science Foundation - USA (2012). Profesor Asociado Departamento de Geociencias y Medio Ambiente Universidad Nacional de Colombia - Colombia (2014-Presente). Investigador Adjunto Center for Isotope Geoscience University of Florida - USA (2012-Presente). Becario Explorer National Geographic Society - USA (2018-Presente).

María Isabel Marín-Cerón

Ingeniera geóloga, doctora en Ciencias de la Tierra y Medioambientales. Profesora del Departamento de Ciencias de la Tierra, Universidad EAFIT. Líder de la línea de geología ambiental y sostenibilidad.


References

  1. G. Botero, Contribución al conocimiento de la geología de la zona central de Antioquia. Medellín, 1963.
  2. D. Rendon, G. Toro, and M. Hermelin, “Modelo cronoestratigráfico para el emplazamiento de los depósitos de vertiente en el Valle de Aburra,” Bol. ciencias la tierra, vol. 18, pp. 103–118, 2006.
  3. E. Aristizábal and S. Yokota, “Evolución geomorfológica del Valle de Aburrá y sus implicaciones en la ocurrencia de movimientos en masa,” Boletín Ciencias la Tierra, 2008.
  4. E. Aristizabal, S. Yokota, H. Ohira, and J. Hagai, “Dating of slope sdiments and alluvial deposits in the Aburra Valley, Colombia,” Geosci. Rept. Shimane Univ., vol. 23, pp. 85–88, 2004.
  5. R. Shlemon, “Zonas de deslizamientos en los alrededores de Medellín, Antioquia (Colombia),” Bol. Geol., vol. Publicacio, p. 45, 1979.
  6. D. Rendon, “Tectonic and sedimentary evolution of the Aburra Valley, northern Colombian Andes.,” 2003.
  7. S. Restrepo-Moreno, D. Foster, D. Stockli, and N. Parra, “Long-term erosion and exhumation of the ‘Altiplano Antioqueño’, Northern Andes (Colombia) from apatite (U–Th)/He thermochronology,” Earth Planet. Sci. Lett., vol. 278, no. 1–2, pp. 1–12, Feb. 2009, doi: 10.1016/j.epsl.2008.09.037. DOI: https://doi.org/10.1016/j.epsl.2008.09.037
  8. S. Zapata, M. Zapata-Henao, A. Cardona, C. Jaramillo, D. Silvestro, and F. Oboh-Ikuenobe, “Long-term topographic growth and decay constrained by 3D thermo-kinematic modeling: Tectonic evolution of the Antioquia Altiplano, Northern Andes,” Glob. Planet. Change, vol. 203, p. 103553, 2021, doi: https://doi.org/10.1016/j.gloplacha.2021.103553. DOI: https://doi.org/10.1016/j.gloplacha.2021.103553
  9. J. Restrepo, “Datación de algunas cenizas volcánicas de Antioquia por el método de trazas de fisión,” 1991.
  10. G. Toro, M. Hermelin, E. Schwabe, B. O. Posada, D. Silva, and G. Poupeau, “Fission-track datings and geomorphic evidences for long-term stability in the Central Cordillera highlands, Colombia,” Zeitschrift fur Geomorphol. Suppl., 2006.
  11. S. Yokota and E. A. Ortiz, “14C dating of an organic paleosol covering gravel beds distributed along the San Jerónimo Fault, Western Medellín, Colombia,” Geosci. Rept. Shimane Univ., vol. 22, pp. 179–182, 2003.
  12. C. García, “Estado del conocimiento de los depósitos de vertiente del Valle de Aburrá,” Boletín Ciencias la Tierra, 2006.
  13. G. Toro, “Tëphrocronologie de la Colombie centrale (département d´Antioquia et abanico de Pereira),” Universidad Joseph Fourier, 1999.
  14. E. A. Ortiz, “Evaluation of Neotectonic Activity of the Cauca-Romeral Fault System near western Medellín, Colombia,” Univerity of Shimane, 2002.
  15. S. Noriega-Londoño, J. Rosero-Romo, J. C. Aros, S. A. Restrepo-Moreno, M. I. Marin-Cerón, and H. Estupiñám, “Quantifying weathering grade of surface deposits in Aburrá Valley, Colombia.” .
  16. J. S. Noller, J. M. Sowers, S. M. Colman, and K. L. Pierce, “Introduction to Quaternary Geochronology,” in Quaternary Geochronology: Methods and Applications, 2000, p. 582. DOI: https://doi.org/10.1029/RF004
  17. M. a. Summerfield, “The changing landscape of geomorphology,” Earth Surf. Process. Landforms, vol. 30, no. 6, pp. 779–781, Jun. 2005, doi: 10.1002/esp.1250. DOI: https://doi.org/10.1002/esp.1250
  18. J. M. Turowski and K. L. Cook, “Field techniques for measuring bedrock erosion and denudation,” Earth Surf. Process. Landforms, vol. 42, no. 1, pp. 109–127, 2017, doi: 10.1002/esp.4007. DOI: https://doi.org/10.1002/esp.4007
  19. P. W. Reiners et al., Geochronology and thermochronology. 2017. DOI: https://doi.org/10.1002/9781118455876
  20. H. A. Viles, “Technology and geomorphology: Are improvements in data collection techniques transforming geomorphic science?,” Geomorphology, vol. 270, Jul. 2016, doi: 10.1016/j.geomorph.2016.07.011. DOI: https://doi.org/10.1016/j.geomorph.2016.07.011
  21. M. Böse, “De la morphostratigraphie e la chronostratigraphie. La geomorphologie quaternaire moderne comme fondement aux recherches sur le climat,” Geomorphol. Reli. Process. Environ., 2014. DOI: https://doi.org/10.4000/geomorphologie.10752
  22. W. Page and M. James, “The Antiquity of the erosion surfaces and the Late Cenozoic deposits near Medellin, Colombia: implications to tectonics and erosion rates,” Rev. CIAF, vol. 6, no. 1–3, pp. 421–454, 1981.
  23. A. Demoulin, A. Mather, and A. Whittaker, “Fluvial archives, a valuable record of vertical crustal deformation,” Quat. Sci. Rev., 2017, doi: 10.1016/j.quascirev.2016.11.011. DOI: https://doi.org/10.1016/j.quascirev.2016.11.011
  24. D. Lague, “The stream power river incision model: evidence, theory and beyond,” Earth Surf. Process. Landforms, vol. 39, no. 1, pp. 38–61, 2014, doi: https://doi.org/10.1002/esp.3462. DOI: https://doi.org/10.1002/esp.3462
  25. A. K. Ault, C. Gautheron, and G. E. King, “Innovations in (U–Th)/He, Fission Track, and Trapped Charge Thermochronometry with Applications to Earthquakes, Weathering, Surface-Mantle Connections, and the Growth and Decay of Mountains,” Tectonics, vol. 38, no. 11, pp. 3705–3739, 2019, doi: https://doi.org/10.1029/2018TC005312. DOI: https://doi.org/10.1029/2018TC005312
  26. L. C. Benedetti and J. Van Der Woerd, “Cosmogenic nuclide dating of earthquakes, faults, and toppled blocks,” Elements, vol. 10, no. 5, pp. 357–361, 2014, doi: 10.2113/gselements.10.5.357. DOI: https://doi.org/10.2113/gselements.10.5.357
  27. S. Noriega-Londoño, M. I. Marín-Cerón, J. Carcaillet, M. Bernet, and I. Angel, “CRE Dating of Torrential Alluvial Deposits as an Approximation to Holocene Climate-Change Signatures in the Northwestern Andes of Colombia,” in Understanding and Reducing Landslide Disaster Risk, 2021. DOI: https://doi.org/10.1007/978-3-030-60319-9_42
  28. T. Pánek, “Recent progress in landslide dating: A global overview,” Prog. Phys. Geogr., vol. 39, no. 2, pp. 168–198, 2015, doi: 10.1177/0309133314550671. DOI: https://doi.org/10.1177/0309133314550671
  29. P. P. Leahy, “Natural Hazards Identification and Hazard Management Systems.” Oxford University Press, 2017, doi: 10.1093/acrefore/9780199389407.013.167. DOI: https://doi.org/10.1093/acrefore/9780199389407.013.167
  30. B. J. Smith, P. A. Warke, and W. B. Whalley, “Landscape Development, Collective Amnesia and the Need for Integration in Geomorphological Research,” Area, vol. 34, no. 4, pp. 409–418, Apr. 2002. DOI: https://doi.org/10.1111/1475-4762.00098
  31. DANE, “Censo General de Poblacion 2005,” 2005.
  32. K. Naranjo Bedoya, E. V. Aristizábal Giraldo, and J. A. Morales Rodelo, “Influencia del ENSO en la variabilidad espacial y temporal de la ocurrencia de movimientos en masa detonados por lluvias en la región Andina,” Ing. y Cienc., 2019, doi: 10.17230/ingciencia.15.29.1. DOI: https://doi.org/10.17230/ingciencia.15.29.1
  33. F. Coupé, E. Arboleda G., and C. García L., “Villatina : algunas reflexiones 20 años después de la tragedia,” Gestión y Ambient., vol. 10, no. 2 SE-, pp. 31–52, May 2007.
  34. J. Duque-Trujillo, C. Bustamante, L. Solari, Á. Gómez-Mafla, G. Toro-Villegas, and S. Hoyos, “Reviewing the antioquia batholith and satellite bodies: A record of late cretaceous to eocene syn-to post-collisional arc magmatism in the central cordillera of Colombia,” Andean Geol., vol. 46, no. 1, 2019, doi: 10.5027/andgeov46n1-3120. DOI: https://doi.org/10.5027/andgeoV46n1-3120
  35. C. Vinasco, “The romeral shear zone,” in Frontiers in Earth Sciences, 2019. DOI: https://doi.org/10.1007/978-3-319-76132-9_12
  36. G. Chicangana, “The Romeral fault system: a shear and deformed extinct subduction zone between oceanic and continental lithospheres in Northwestern South America,” Earth Sci. Res. J., vol. 9, no. 1, pp. 51–66, 2005.
  37. E. Aristizábal and M. Arango-Carmona, “Definición y clasificación de las avenidas torrenciales y su impacto en los Andes colombianos,” Rev. Colomb. Geogr., vol. 29, pp. 242–258, 2020, doi: 10.15446/rcdg.v29n1.72612. DOI: https://doi.org/10.15446/rcdg.v29n1.72612
  38. J. Restrepo and J. F. Toussaint, “Terranes and continental acretions in the Colombian Andes,” Episodes, vol. 11, no. 3, pp. 189–193, 1988. DOI: https://doi.org/10.18814/epiiugs/1988/v11i3/006
  39. J. Restrepo, “Chapter 7 Tectonostratigraphic terranes of Colombia: An Update: Second part, Oceanic Terranes,” 2020.
  40. F. Cediel, H. Leal-Mejia, R. Shaw, J. Melgarego, and P. Restrepo-Pace, Petroleum geology of Colombia: Regional geology of Colombia, vol. 1. Medellín, 2011.
  41. S. Zapata et al., “Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau,” Gondwana Res., vol. 66, pp. 207–226, Feb. 2019, doi: 10.1016/j.gr.2018.10.008. DOI: https://doi.org/10.1016/j.gr.2018.10.008
  42. J. H. Caballero, A. Rendón, J. J. Gallego, and N. V. Uasapud, “Inter-Andean Cauca River Canyon,” in Landscapes and Landforms of Colombia, M. Hermelin, Ed. Cham: Springer International Publishing, 2016, pp. 155–166. DOI: https://doi.org/10.1007/978-3-319-11800-0_13
  43. M. Hermelin, “Sistemas morfogénicos contrastados en el norte de la cordillera central colombiana,” Rev. la Acad. Colomb. ciencas exactas, físicas y Nat., 2007.
  44. L. A. Arias, “Altiplanos y cañones en Antioquia: Una mirada genética,” Rev. Fac. Ing. Univ. Antioquia, vol. 12, pp. 84–96, 1996.
  45. A. Correa-Martínez, U. Martens, and G. García, “Collage of tectonic slivers abutting the eastern Romeral Fault System in central Colombia,” J. South Am. Earth Sci., vol. 104, p. 102794, 2020, doi: 10.1016/j.jsames.2020.102794. DOI: https://doi.org/10.1016/j.jsames.2020.102794
  46. A. M. Correa et al., “U/Pb zircon ages and Nd-Sr isotopes of Altavista Stock and the San Diego Gabro: New insights of Cretaceous arc magmatism in the Colombian Andes,” in V SSAGI, 2006.
  47. S. Duque-Palacio, D. Seward, S. A. Restrepo-Moreno, and D. García-Ramos, “Timing and rates of morpho-tectonic events in a segment of the Central and Western cordilleras of Colombia revealed through low-temperature thermochronology,” J. South Am. Earth Sci., vol. 106, p. 103085, 2021, doi: https://doi.org/10.1016/j.jsames.2020.103085. DOI: https://doi.org/10.1016/j.jsames.2020.103085
  48. L. A. Arias, L. González, and G. Arias, “Historia del Relieve y los Suelos en el Altiplano de Santa Rosa de Osos – Antioquia - Región el Vergel.,” Medellín, 2000.
  49. S. Noriega-Londoño, S. A. Restrepo-Moreno, C. Vinasco, M. A. Bermúdez, and K. Min, “Thermochronologic and geomorphometric constraints on the Cenozoic landscape evolution of the Northern Andes: Northwestern Central Cordillera, Colombia,” Geomorphology, vol. 351, 2020, doi: 10.1016/j.geomorph.2019.106890. DOI: https://doi.org/10.1016/j.geomorph.2019.106890
  50. T. Van Der Hammen, “Estratigrafia del Terciario y Maestrichtiano continentales y tectogenesis de los Andes Colombianos: Bol,” Bogotá D.C., 1960.
  51. C. Arbeláez, “Contribuciones desde la geomorfometría y la geomorfología tectónica: Valle de Aburrá, Cordillera Central de Colombia,” 2019.
  52. D. Silva, “Datación por trazas de las tefras depositadas en los alrededores del Valle de Aburrá,” Universidad EAFIT, 1999.
  53. C. Garcia, M. Hermelin, G. Lopéz, G. Sierra, G. Toro, and W. Rink, “Datación por fotoluminiscencia de la stoneline y otras formaciones superficiales del Llano de Ovejas, Cordillera Central, Antioquia,” Bol. Geol., vol. 29, no. 2, p. 31, 2007.
  54. “No Title.”
  55. F. Suter, J. I. Martínez, and M. I. Vélez, “Holocene soft-sediment deformation of the Santa Fe-Sopetr??n Basin, northern Colombian Andes: Evidence for pre-Hispanic seismic activity?,” Sediment. Geol., vol. 235, no. 3–4, pp. 188–199, 2011, doi: 10.1016/j.sedgeo.2010.09.018. DOI: https://doi.org/10.1016/j.sedgeo.2010.09.018
  56. J. Gallego, “Assessment of recent tectonic activity of the Sabanalarga Fault System, Western Antioquia – Colombia,” University of Bern, 2018.

Downloads

Download data is not yet available.