Skip to main navigation menu Skip to main content Skip to site footer

Evaluación de las propiedades estructurales, morfológicas y magnéticas del sistema Bi1-xSmxFeO3

Abstract

This paper reports the synthesis of the Bi1-xSmxFeO3 system (x = 0.00, 0.02, 0.04, 0.06, 0.08 and 0.10) obtained by the
solid-state reaction method at 1073.15 K for 15 h. Characterization allowed evaluating the effect of Sm3+ insertion on the
structural, morphological and magnetic properties of the bismuth ferrite. Structural characterization was made by X-ray
Diffraction (XRD) and Rietveld refinement, indicating the formation of a rhombohedral majority phase of the space group
R3c (161) with a proportion higher than the reported up to now. The morphological characterization through scanning electron microscopy (SEM) allowed concluding that the insertion of samarium decreases the particle size from 7.5 μm to 2.5 μm, thanks to the smaller ionic radius, which also led to the contraction of the lattice parameters. The magnetic analysis showed a typical ferromagnetic behaviour in all of the synthesized samples, with the presence of a PM-AFM transition at 260 K.

Keywords

solid-state, bismuth ferrite, samarium, doping

PDF

Author Biography

Iván Fernando Betancourt-Montañez

I.F. Betancourt-Montañez is a MSc. in Physics student from Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia. He is an active member of the research group Física de Materiales. He currently works on Materials Science.

Christian Fabian Varela-Olivera

Christian F. Varela is a MSc. in Chemistry from Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.

He is an active member of the Physics of Materials research group. He is a professor at the Faculty of Basic Sciences and Engineering of the Universidad de los Llanos.

Julian Andres Munevar-Cagigas

A. Munevar-Cagigas is a PhD. in Physics from Centro Brasileiro De Pesquisas Físicas, He is a professor at the Centro de Ciências Naturais e Humanas at Universidade Federal do ABC, Santo André, Brasil.

Santiago Sandoval-Gutiérrez

Sandoval Gutiérrez is a MSc. in Physics from Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.

He is a professor at the Faculty of Basic Sciences and Engineering of the Universidad de los Llanos and is an active member of the research group Sistemas Dinámicos. He currently works on Materials Science.

César Armando Ortíz-Otálora

C.A. Ortíz-Otálora is a MSc. in Physics from Universidad Nacional de Colombia. He is a professor at the School of Physics at Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia. He is in charge of an X-ray diffractometer and is an active member of the Grupo de Superficies Electroquímica y Corrosión - GSEC.

Carlos Arturo Parra-Vargas

C.A. Parra-Vargas is a PhD. in Physical Sciences from Universidad Nacional de Colombia. He is a professor at the School of Physics of the Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia, where he is also the coordinator of the research group Física de Materiales-GFM. He works on materials science.

Claudia Liliana Sánchez Sáenz

Claudia Liliana Sánchez-Sáenz is a PhD in educational Sciences. She is a Professor and researcher at Universidad Pedagógica y Tecnológica de Colombia. She is an active member of the Research group TelemaTICs at Universidad Pedagógica y Tecnológica de Colombia.


References

  1. K. S. Nalwa & A. Garg, “Phase evolution, magnetic and electrical properties in Sm-doped bismuth ferrite”. Journal of Applied Physics, 2008, vol. 103(4), pp. 044101. https://doi.org/10.1063/1.2838483 DOI: https://doi.org/10.1063/1.2838483
  2. P. Uniyal, K. L. Yadav, “Pr doped bismuth ferrite ceramics with enhanced multiferroic properties”. Journal of Physics: Condensed Matter, 2009, vol. 21 (40), pp. 405901. https://doi.org/10.1088/0953-8984/21/40/405901 DOI: https://doi.org/10.1088/0953-8984/21/40/405901
  3. P. C. Sati, P. C. Sati, M. Arora, S. Chauhan, M. Kumar, S. Chhoker, “Structural, magnetic, vibrational and impedance properties of Pr and Ti codoped BiFeO3 multiferroic ceramics. Ceramics International, vol. 40(6), pp. 7805-7816, 2014. https://doi.org/10.1016/j.ceramint.2013.12.124 DOI: https://doi.org/10.1016/j.ceramint.2013.12.124
  4. J. M. Hu, L. Q. Chen, C. W. Nan, “Multiferroic heterostructures integrating ferroelectric and magnetic materials”. Advanced materials, vol. 28(1), pp, 15-39, 2016. https://doi.org/10.1002/adma.201502824 DOI: https://doi.org/10.1002/adma.201502824
  5. B. H. Toby & R. B. Von Dreele, “GSAS-II: the genesis of a modern open-source all-purpose crystallography software package”. Journal of Applied Crystallography, 2013, vol. 46, no 2, pp. 544-549. https://doi.org/10.1107/S0021889813003531 DOI: https://doi.org/10.1107/S0021889813003531
  6. W. Kraus & G. Nolze, “POWDER CELL–a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns”. Journal of applied Crystallography, 1996, vol. 29, no 3, pp. 301-303. https://doi.org/10.1107/S0021889895014920 DOI: https://doi.org/10.1107/S0021889895014920
  7. K. Momma & F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data”. Journal of applied crystallography, 2011, vol. 44, no 6, pp. 1272-1276. https://doi.org/10.1107/S0021889811038970 DOI: https://doi.org/10.1107/S0021889811038970
  8. A. M. Morales-Rivera, I. F. Betancourt-Montañez, S. A. Martínez-Ovalle, Ó. H. Pardo-Cuervo, J. A. Mejía-Gómez, S. Segura-Peña, C. A. Parra-Vargas, “Structural and magnetic properties of the Bi1-xLuxFeO3 (x= 0.00, 0.02 and 0.04) system”. Dyna, 2020, vol. 87, no 215, pp. 84-89. https://doi.org/10.15446/dyna.v87n215.83538 DOI: https://doi.org/10.15446/dyna.v87n215.83538
  9. J. Bielecki, P. Svedlindh, D. T. Tibebu, S. Cai, S. G. Eriksson, L. Börjesson, C. S. Knee, “Structural and magnetic properties of isovalently substituted multiferroic BiFeO3: insights from Raman spectroscopy”. Physical Review B, 2012, vol. 86, no 18, pp. 184422. DOI: https://doi.org/10.1103/PhysRevB.86.184422 DOI: https://doi.org/10.1103/PhysRevB.86.184422
  10. N. Zhang, J. Q. Ding, Y. P. Wang, X. N. Liu, Y. Q. Li, M. F. Liu, Z. M. Fu, Y. W. Yang, J. Su, G. L. Song, F. Yang, Y. Y. Guo and J-M Liu, “Enhanced high temperature ferromagnetism in Bi1−xRxFeO3 (R= Dy, Y) compounds”. Journal of Physics: Condensed Matter, 2021, vol. 33, no 13, pp. 135803. https://doi.org/10.1088/1361-648X/abdb10 DOI: https://doi.org/10.1088/1361-648X/abdb10
  11. J. G. Park, M. D. Le, J. Jeong and S. Lee, “Structure and spin dynamics of multiferroic BiFeO3”. Journal of Physics: Condensed Matter, 2014, vol. 26, no 43, pp. 433202. https://doi.org/10.1088/0953-8984/26/43/433202 DOI: https://doi.org/10.1088/0953-8984/26/43/433202
  12. R. Köferstein, “Synthesis, phase evolution and properties of phase-pure nanocrystalline BiFeO3 prepared by a starch-based combustion method”. Journal of alloys and compounds, 2014, vol. 590, pp. 324-330. https://doi.org/10.1016/j.jallcom.2013.12.120 DOI: https://doi.org/10.1016/j.jallcom.2013.12.120
  13. T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh and S. S. Wong, “Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles”. Nano letters, 2007, vol. 7, no 3, pp. 766-772. https://doi.org/10.1021/nl063039w DOI: https://doi.org/10.1021/nl063039w
  14. E. R. Ochoa-Burgos, C. A. Parra-Vargas, J. A. Mejía-Gómez & E. de Grave, “Study of the structural and magnetic properties of the system Bi1-xYxFeO3 x= 0 and 0.07 using Mössbauer spectroscopy”. Dyna, 2018, vol. 85, no 207, pp. 22-28. https://doi.org/10.15446/dyna.v85n207.68421 DOI: https://doi.org/10.15446/dyna.v85n207.68421
  15. D. V. Karpinsky, A. Pakalniškis, G. Niaura, D. V. Zhaludkevich, A. L. Zhaludkevich, S. I. Latushka, A. Kareiva, “Evolution of the crystal structure and magnetic properties of Sm-doped BiFeO3 ceramics across the phase boundary region”. Ceramics International, 2021, vol. 47, no 4, pp. 5399-5406. https://doi.org/10.1016/j.ceramint.2020.10.120 DOI: https://doi.org/10.1016/j.ceramint.2020.10.120
  16. C. A. Narváez, C. F. Vilaquirán-Raigoza, A. P. González-Nieva, “Modificación de las propiedades estructurales, eléctricas y magnéticas del BiFeO3 por la incorporación de Ba y Nb”. Química Nova, 2017, vol. 40, no.2, p. 182-191. http://dx.doi.org/10.21577/0100-4042.20160185 DOI: https://doi.org/10.21577/0100-4042.20160185
  17. D. Maurya, H. Thota, A. Garg, B. Pandey, P. Chand and H. C. Verma, “Magnetic studies of multiferroic Bi1−xSmxFeO3 ceramics synthesized by mechanical activation assisted processes”. Journal of Physics: Condensed Matter, 2008, vol. 21, no 2, pp. 026007. https://doi.org/10.1088/0953-8984/21/2/026007 DOI: https://doi.org/10.1088/0953-8984/21/2/026007
  18. M. A. Basith, A. Billah, M. A. Jalil, N. Yesmin, M. A. Sakib, E. K. Ashik, B. Ahmmad, “The 10% Gd and Ti co-doped BiFeO3: a promising multiferroic material”. Journal of Alloys and Compounds, 2017, vol. 694, pp. 792-799. https://doi.org/10.1016/j.jallcom.2016.10.018 DOI: https://doi.org/10.1016/j.jallcom.2016.10.018
  19. T. Durga Rao & S. Asthana, “Evidence of improved ferroelectric phase stabilization in Nd and Sc co-substituted BiFeO3”. Journal of Applied Physics, 2014, vol. 116, no 16, p. 164102. https://doi.org/10.1063/1.4898805 DOI: https://doi.org/10.1063/1.4898805
  20. L. M. Ramirez-Guzmán, A. F. Cruz-Pacheco, J. A. Gómez-Cuaspud & C. A. Parra-Vargas, “Structural and magnetic properties of gadolinium modified BiFeO3”. Materials Science Poland, 2020, vol. 38. https://doi.org/10.2478/msp-2020-0075 DOI: https://doi.org/10.2478/msp-2020-0075

Downloads

Download data is not yet available.