Skip to main navigation menu Skip to main content Skip to site footer

Morphological and structural characterization of fly ash powders

Abstract

Morphological and structural characterization of fly ash powder's reports are obtained from coal  combustion supplied by the thermal - electrical plant Termotasajero S.A. The morphological study consisted in the superficial analysis, using Scanning electron microscopy (SEM). The basic chemical composition was found using X ray energy dispersion spectrums (EDX - SEM) whereas structural characterization was developed by X-ray diffraction (XRD). The software Image tool V. 3.0. was used for the particle size distribution. The results obtained show that the fly ash powders are composed mostly by spherical particles as well as unburned particles adhered to the particles, with average particle size of order micrometers. The structural study, using XRD, reports the main crystalline phases of mullite, quartz and hematite. Our results will allow us to evaluate the Thermal - electrical Plant Termotasajero's coal combustion processes, as well as another uses and applications of those ashes.

Keywords

flay ash, morphology, structure, SEM, EDS, XRD

PDF (Español)

References

  • Bouzoubaa, N., Zhang, M. H. & Malhotra, V. M. (2001).Mechanical properties and durability of concrete made with high-volume fly ash blended cements using a coarse fly ash. Cement and Concrete
  • Research, 31(10), 1393-1402.
  • Cabrera, J.G. & Cusens, A.R. (1982).The use of PFA in concrete. International symposium; vol.1 and 2, Leeds.
  • Cañadas-Serrano, L. et al. (1990). Caracterización de las
  • cenizas de cinco centrales térmicas españolas. Medio ambiente- RETEMA, 13-20.
  • Davidovits, J. (1994). Global Warming Impact on the Cement and Aggregates Industries. World Resource Review, 6(2), 263-278.
  • De Luxan, M.P., Sánchez, I. & Soria, F. (1988). Características de cenizas volantes españolas. Mater. de const. 38 (209), 25-38.
  • Hanehara, S., Tomosawa, F., Kobayakawa, M. & Hwang, K. (2001). Effects of water/powder ratio, mixing ratio of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste. Cement and Concrete Research, 31(1), 31-39.
  • Iyer, R.S. & Scott, J.A. (2001). Power Station Fly Ash- A Review of Value- Added Utilization Outside of the Construction Industry. Resources, Conservation, and Recycling, 31, 217-228.
  • Merino, L. & Morales, J. (2008). Relationship of the cristallinity index (CI) with the age and content of F and CO ions in vertébrate fossil samples. Revista 3 Estudios Geológicos, 64(1), 75-87.
  • Öztürk, N. & Kavak, D. (2005). Adsorption of boron from aqueous solutions using fly ash: Batch and column studies. Journal of Hazardous Materials. B127, 81- 88.
  • Potgieter, J.H., Bada, S.O. & Potgieter-Vermaak, S.S. (2009). Adsorptive removal of various phenols from water by Sout African coal fly ash. Water, 35(1), 89-96.
  • Rajamannan, B., Kalyana Sundaram, C., Viruthagiri, G. & Shanmugam, N. (2013). Effect of fly ash addition on the mechanical and other properties of ceramic tiles. International Journal of Latest Research in Science and Technology. 2(1), 486-491.
  • Ramírez J. l. (1990). Orígenes, tipos y caracterización de las
  • cenizas volantes. Madrid: MOPU_CEDEX, Cuadernos de Investigación C27.
  • Ruiz-Román, J.M., Alonso, C., Cambronero, F. Corpas,L.E.G., Alfonso, M. & Moraño, A.J. (2000).
  • Aprovechamiento de las cenizas volantes, clase F,de centrales térmicas para la fabricación de materiales cerámicos. Bol. Soc. Esp. Cerám. Vidrio, 39 (3), 229-231.
  • Škvára, F., Jílek, T. & Kopecký, L. (2005). Geopolymer materials based on fly ash”. Ceramics – Silikáty, 49 (3), 195-204.
  • Villar, M.P., Gago, L. & García, R. (2004). Comportamiento de Mullitas a alta temperaturas. Estudio mediante XRD. Bol. Soc. Esp. Cerám. V. 43 (2), 135-137.
  • Wang, S., Boyjoo, Y., Choueib, A. & Zhu, Z. H. (2005). Removal of dyes from aqueous solution using fly ash and red mud. Water Research, 39(1), 129-138.

Downloads

Download data is not yet available.