Inventory model using bayesian dynamic linear model for demand forecasting
Abstract
An important factor of manufacturing process is the inventory management of terminated product. Constantly, industry is looking for better alternatives to establish an adequate plan of production and stored quantities, with optimal cost, getting quantities in a time horizon, which permits to define resources and logistics with anticipation, needed to distribute products on time. Total absence of historical data, required by many statistical models to forecast, demands the search for other kind of accurate techniques. This work presents an alternative that not only permits to forecast, in an adjusted way, but also, to provide optimal quantities to produce and store with an optimal cost, using Bayesian statistics. The proposal is illustrated with real data. Palabras clave: estadística bayesiana, optimización, modelo de inventarios, modelo lineal dinámico bayesiano. Keywords: Bayesian statistics, optiKeywords
bayesian statistics, optimization, inventory models, dynamic linear model.
Author Biography
Marisol Valencia-Cárdenas
Administrativo Profesional
Oficina Educación Virtual
References
- Barrera, C. & Correa, J. (2008). Distribución predictiva bayesiana para modelos de pruebas de vida vía MCMC. Revista Colombiana de Estadística, 31(2), 145–155.
- Bolstad, W. M. (1986). Harrison-Stevens Forecasting and the Multiprocess Dynamic Linear Model. The American Statistician, 40(2), 129–135.
- Bowerman, B., Koehler, A. & O’Connell, R. (2007): Forecasting, time series, and regression: an applied approach. Pronósticos, series de tiempo y regresión: un enfoque aplicado. México, DF:Cencage Learning.
- Choi, T.-M., Li, D. & Yan, H. (2003). Optimal two-stage ordering policy with Bayesian information updating. Journal of the Operational Research Society, 54(8), 846–859. doi:10.1057/palgrave.
- jors.2601584.
- Congdon, P. (2002). Bayesian statistical modelling. London,
- England: Wiley Series in Probability and Statistics.
- Correa, A. & Gómez, R. (2009). Tecnologías de la información
- en la cadena de suministro. DYNA, 76(157), 37–48. Retrieved from http://books. google.com/books?hl= en&l r=&id=5gbDeVq-
- JPB8C&oi =fnd&pg=PA437&dq= INFORMATION+TECHNOLOGIES + IN+ SUPPLY+CHAIN+ MANAGEMENT& ots= SI1eiB3r-VP&sig= 27QLdpkYqUHVOIJTWEL527kqc_4.
- Feng, Q., Gallego, G., Sethi, S., Yan, H. & Zhang, H. (2005). Periodic-review inventory model with three consecutive delivery modes and forecast updates. Journal of Optimization Theory and Applications, 124, 137–155.
- Feng, Q., Sethi, S., Yan, H. & Zhang, H. (2006). Are base-stock policies optimal in inventory problems with multiple delivery modes? Operations Research, 54(4), 801–807. Retrieved from http://
- or.journal.informs.org/content/54/4/801.short.
- Gill, J. (2007). Bayesian methods: a social and behavioral sciences approach. United States of America:Chapman & Hall.
- Gregory, A. (2010). Revenue and inventory optimization: the necessary evolution of revenue management. The Journal of Hospitality Financial Management, 18(2), 61–63. Doi:10.1080/10913211.2010.10653895.
- Gutiérrez, V. & Vidal, C. J. (2008). Modelos de gestión de inventarios en cadenas de abastecimiento: Revisión de la literatura. Revista Facultad de Ingeniería, N° 43, 134-149.
- Harrison, J. & West, M. (1991). Dynamic linear model diagnostics. Biometrika Trust, 78(4), 797–808.
- Jeyanthi, N. & Radhakrishnan, P. (2010). Optimizing multi product inventory using genetic algorithm for efficient supply chain management involving lead time. International Journal of Computer,
- (5), 231–239.
- Makridakis, S., Hibon, M., Moser, C., Journal, S., Statistical, R. & Series, S. (2011). Accuracy of forecasting:an empirical investigation. Journal of the Royal Statistical Society, 142(2), 97–145.
- Martin, A., Quinn, K. & Park, J. H. (2011). MCMCpack:Markov Chain Monte Carlo in R. Journal of Statistical Software, 42(9), 1–21.
- Medina, S. & García, J. (2005). Predicción de demanda de energía en Colombia mediante un sistema de inferencia difuso neuronal. Energética, 33, 15–24.
- Meinhold, R. J. & Singpurwalla, N. D. (1983). Understanding
- the Kalman Filter. The American Statistician, 37(2), 123–127.
- Mockus, J. (2002). Bayesian heuristic approach to scheduling.
- Informatica, Lith. Acad. Sci., 13(3), 311–332.
- Montgomery, D., Peck, E. & Vining, G. (2006). Introducción
- al análisis de regresión lineal. Compañía Editorial Continental, 3, 612.
- Salpasaranis, K. & Stylianakis, V. (2012). A hybrid genetic
- programming method in optimization and forecasting: a case study of the broadband penetration in OECD countries. Advances
- in Operations Research, 2012, 1–32. doi:10.1155/2012/904797.
- Sarimveis, H., Patrinos, P., Tarantilis, C. D. & Kiranoudis, C. T. (2008). Dynamic modeling and control of supply chain systems: A review. Computers & Operations Research, 35(11), 3530–3561.
- doi:10.1016/j.cor.2007.01.017.
- Sethi, S., Yan, H. & Zhang, H. (2003). Inventory models
- with fixed costs, forecast updates, and two delivery modes. Operations Research, 51(2), 321–328. Retrieved from http://or.journal.informs.org/content/51/2/321.short
- Silva, A.N. (2006). Logística de almacenamiento, Tecana American University Education, Caracas.
- Silva, V., Fleming, P., Sugimoto, J. & Yokoyama, R. (2008). Multiobjective optimization using variable complexity modelling for control system design. Applied Soft Computing, 8(1), 392–401.
- doi:10.1016/j.asoc.2007.02.004.
- Silver, E. (2004). An overview of heuristic solution methods. Journal of the Operational Research Society, 55(9), 936–956. doi:10.1057/palgrave.jors.2601758.
- Rueda, V., Velásquez, J. D. & Franco, C. (2011). Avances recientes en la predicción de la demanda de electricidad usando modelos no lineales. DYNA, 78(167), 36–43.
- Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E. (2004). Managing the supply chain: the definitive guide for the business professional. United States. McGraw-Hill.
- Singh, A. (2012). An overview of the optimization modelling applications. Journal of Hydrology, 466-467, 167–182. doi:10.1016/j.jhydrol.2012.08.004.
- Tamura, H. (1975). Decentralized optimization for distributed-
- lag models of discrete systems. Automatica, 11, 593–6112.
- Urban, T. L. & Baker, R. C. (1997). Optimal ordering and
- pricing policies in a single-period environment with multivariate demand and markdowns. European Journal of Operational Research, 103, pp. 573–583.
- Valencia, M. & Correa, J. (2013). Un modelo dinámico bayesiano para pronóstico de energía diaria. Revista Ingeniería Industrial, 12(2), 7–17.
- Wang, S. (2006). Exponential smoothing for forecasting
- and Bayesian validation of computer models.Doctoral Thesis. Georgia. United-States. Georgia Institute of Technology. In: https://smartech.
- gatech.edu/bitstream/handle/1853/19753/wang_shuchun_200612_phd.pdf.
- West, M. & Harrison, J. (1997). Bayesian Forecasting and Dynamic Models (Vol 18., p. 704). New York. Springer Series in Statistics. ISBN: 0387947256.
- Yang, W., Chan, F. T. S. & Kumar, V. (2012). Optimizing replenishment polices using genetic algorithmfor single-warehouse multi-retailer system. Expert Systems with Applications, 39(3), 3081– 3086. doi:10.1016/j.eswa.2011.08.171.
- Yokoyama, M. (2002). Integrated optimization of inventory-
- distribution systems by random local search and a genetic algorithm. Computers & Industrial Engineering, 42(2-4), 175–188.
- doi:10.1016/S0360-8352(02)00023-2.
- Zanakis, S. H. & Evans, J. R. (1981). Heuristic “Optimization”:
- Why, When, and How to Use It. Interfaces, 11(5), 84–91. Doi:10.1287/inte.11.5.84.
Downloads
Download data is not yet available.