Skip to main navigation menu Skip to main content Skip to site footer

Exergy analysis of cogeneration plant operating under combined cycle

Abstract

Nowadays, there are several ways to generate electricity; one of them is to harness the amount of energy released after burning a fuel and carrying out a series of processes to convert energy through a thermodynamic cycle. To make these processes more efficient, there are techniques that allows to analyze which plant devices are wasting energy; one of these techniques is exergy analysis which consists on a simultaneous application of the first and second law of thermodynamics. This paper shows the exergy analysis in a plant of electricity and heat generation from the steam production operating under a combined cycle. Initially, important concepts are defined to perform exergy analysis. After applying the first and second law of thermodynamics, the results indicate that the exergy efficiency of the plant of combined cycle is 53% and the combustion chamber is the device that destroyed more exergy in the system and the pumps are devices where occur less destruction of exergy

Keywords

exergy balance, combined cycle, cogeneration, energy, irreversibilit

PDF (Español)

Supplementary File(s)

Sin título (Español)

Author Biography

Hernán Darío Patiño-Duque

Ingeniería Mecánica

Bryan Dario Rosero-Coral

Ingeniero Mecanico, UTP

Candidato a Master en Ingeniería Mecanica


References

  1. Açikkalp, E., Aras, H., & Hepbasli, A. (2014). Advanced exergy analysis of an electricity-generating facility using natural gas. Energy Conversion and Management, 82, 146–153.
  2. DOI: http://doi.org/10.1016/j.enconman.2014.03.006. DOI: https://doi.org/10.1016/j.enconman.2014.03.006
  3. Aljundi, I. H. (2009). Energy and exergy analysis of a steam power plant in Jordan. Applied Thermal Engineering, 29(2), 324–328.
  4. DOI: http://doi.org/10.1016/j.applthermaleng.2008.02.029. DOI: https://doi.org/10.1016/j.applthermaleng.2008.02.029
  5. Anvari, S., Jafarmadar, S., & Khalilarya, S. (2016). Proposal of a combined heat and power plant hybridized with regeneration organic Rankine cycle: Energy-Exergy evaluation. Energy Conversion and Management, 122, 357–365.
  6. DOI: http://doi.org/10.1016/j.enconman.2016.06.002.
  7. Bassily, A. M. (2013). Modeling, analysis, and modifications of different GT cooling techniques for modern commercial combined cycle power plants with reducing the irreversibility of the HRSG. Applied Thermal Engineering, 53(1), 131–146.
  8. DOI: http://doi.org/10.1016/j.applthermaleng.2013.01.002. DOI: https://doi.org/10.1016/j.applthermaleng.2013.01.002
  9. Carranza Sánchez, Y. A., & de Oliveira, S. (2015). Exergy analysis of offshore primary petroleum processing plant with CO2 capture. Energy, 88, 46–56. DOI: http://doi.org/10.1016/j.energy.2015.05.130. DOI: https://doi.org/10.1016/j.energy.2015.05.130
  10. Casarosa, C., Donatini, F., & Franco, A. (2004). Thermoeconomic optimization of heat recovery steam generators operating parameters for combined plants. Energy, 29(3), 389–414.
  11. DOI: http://doi.org/10.1016/S0360-5442(02)00078-6. DOI: https://doi.org/10.1016/S0360-5442(02)00078-6
  12. Cengel, Y. a., & Boles, M. E. (2011). Termodinamica - Cengel 7th. Termodinamica, 1456.
  13. Cengel, Y. a., & Ghajar, A. J. (2012). Transferencia de calor y masa, Fundamentos y aplicaciones. (McGrawwHill, Ed.) (4th ed.). Ciudad de Mexico.
  14. Dincer, I., & Rosen, M. A. (2013). Chapter 12 – Exergy Analysis of Steam Power Plants. In Exergy (pp. 261–284).
  15. DOI: http://doi.org/10.1016/B978-0-08-097089-9.00012-7. DOI: https://doi.org/10.1016/B978-0-08-097089-9.00012-7
  16. Elsafi, A. M. (2015). Exergy and exergoeconomic analysis of sustainable direct steam generation solar power plants. Energy Conversion and Management, 103, 338–347.
  17. DOI: http://doi.org/10.1016/j.enconman.2015.06.066 DOI: https://doi.org/10.1016/j.enconman.2015.06.066
  18. El-Sayed, Y. M., & Gaggioli, R. A. (1989). A Critical Review of Second Law Costing Methods—I: Background and Algebraic Procedures. Journal of Energy Resources Technology, 111(1), 1–7. JOUR. Retrieved from http://dx.doi.org/10.1115/1.3231396. DOI: https://doi.org/10.1115/1.3231396
  19. Ersayin, E., & Ozgener, L. (2015). Performance analysis of combined cycle power plants: A case study. Renewable and Sustainable Energy Reviews, 43, 832–842.
  20. DOI: http://doi.org/10.1016/j.rser.2014.11.082. DOI: https://doi.org/10.1016/j.rser.2014.11.082
  21. García Santiago, G. F. (2006). Centrales Termicas De Ciclo Combinado: Teoria Y Proyecto. (Endesa, Ed.). España.
  22. Horlock, J. H. (1995). Combined power plants - past, present, and future. Journal of Engineering for Gas Turbines and Power, 117(4), 608–616. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0029386185&partnerID=tZOtx3y1. DOI: https://doi.org/10.1115/1.2815448
  23. Onovwiona, H. I., & Ugursal, V. I. (2006). Residential cogeneration systems: review of the current technology. Renewable and Sustainable Energy Reviews, 10(5), 389–431.
  24. DOI: http://doi.org/10.1016/j.rser.2004.07.005. DOI: https://doi.org/10.1016/j.rser.2004.07.005
  25. Petrakopoulou, F., Tsatsaronis, G., Morosuk, T., & Carassai, A. (2012). Conventional and advanced exergetic analyses applied to a combined cycle power plant. Energy, 41(1), 146–152.
  26. DOI: http://doi.org/10.1016/j.energy.2011.05.028. DOI: https://doi.org/10.1016/j.energy.2011.05.028
  27. Prieto, I. (2006). Ciclos combinados. Retrieved from http://ocw.uniovi.es/pluginfile.php/1012/mod_resource/content/1/1C_C12757_0910/04_GT14_Centrales_termicas_de_ciclo_combinado.pdf.
  28. S. Anvari, S. Jafarmadar, & S. Khalilarya, “Proposal of a combined heat and power plant hybridized with regeneration organic Rankine cycle: Energy-Exergy evaluation,” Energy Conversion and Management,
  29. vol. 122, pp. 357–365, August, 2016.
  30. DOI: https://doi.org/10.1016/j.enconman.2016.06.002. DOI: https://doi.org/10.1016/j.enconman.2016.06.002
  31. Sanjay, & Prasad, B. N. (2013). Energy and exergy analysis of intercooled combustion-turbine based combined cycle power plant. Energy, 59, 277–284.
  32. DOI: http://doi.org/10.1016/j.energy.2013.06.051. DOI: https://doi.org/10.1016/j.energy.2013.06.051
  33. Sanz, D. Análisis y Optimización exergética de una planta de Cogeneración para la Industria Azucarera (2014).
  34. Systems, O. (2016). Engineering Equation Solver - Universidad Tecnológica de Pereira. F-Chart Software, Box. Pereira.
  35. Torres Gonzáles E, Salazar Peryra, Lugo LeyteR, T. A. (2011). Analisis exergoeconómico de una planta de cogeneración con turbina de gas considerando el proceso de formación del residuo, 1387–1392.
  36. Xiang, W., & Chen, Y. (2007). Performance improvement of combined cycle power plant based on the optimization of the bottom cycle and heat recuperation. Journal of Thermal Science, 16(1), 84–89.
  37. DOI: http://doi.org/10.1007/s11630-007-0084-4. DOI: https://doi.org/10.1007/s11630-007-0084-4

Downloads

Download data is not yet available.