Skip to main navigation menu Skip to main content Skip to site footer

Linear multivariable control with decoupling in a heat exchanger

Abstract

This document describes the validation of linear multivariable control designs in a heat exchanger under virtual environment using Hysys, where the interest was focused on the analysis of the different responses of MIMO system when regulatory control was done with different decouplers and without decoupler. Three types of decoupling were used: Steady-State Simplified, Simplified and Generalized. The values of the set-points were 60 °C for the flow temperature at the outlet of the tubes, and 41 °C for the flow temperature at the outlet of the shell; the manipulated variables were the flows into the tubes and the shell, because percentages of opening the corresponding valves. PI controllers were tuned by IMC design and used to regulate the temperatures. By comparing the outcomes, it´s evident that Simplified Decoupling is the best to reduce the effect of the disturbance by coupling.

Keywords

Decoupling, Heat exchanger, IMC, Multivariable control, PI control

PDF (Español)

Author Biography

Jaime Freddy Ricardo-Barrera

Pregrado en Ingeniería Electrónica

Especialista en Control e Instrumentación Industrial

Especialista en Telecomunicaciones

Universidad Pontificia Bolivariana 

Edgar Barrios-Urueña

Pregrado en Ingeniería Eléctrica

Maestría en Ciencias de Ingeniería Eléctrica


References

  1. F. Delatore, F. Leonardi, L. Novazzi, J. Da Cruz, Multivariable H-Infinity model matching control of a heat exchanger network (HEN) with bypasses. IEEE Xplore Digital Library, 2011.
  2. DOI:10.1109/ICCA.2011.6138094 DOI: https://doi.org/10.1109/ICCA.2011.6138094
  3. J. Rico, M. Gil-Martinez, Multivariable QFT robust control of a heat exchanger. IEEE Xplore Digital Library, 2011.
  4. DOI: 10.1109/MED.2011.5983125 DOI: https://doi.org/10.1109/MED.2011.5983125
  5. A. Vasičkaninová, M. Bakošová, Control of a heat exchanger using Takagi-Sugeno fuzzy model. IEEE Xplore Digital Library, 2014.
  6. DOI: 10.1109/CarpathianCC.2014.6843684 DOI: https://doi.org/10.1109/CarpathianCC.2014.6843684
  7. Z. Zidane, M. Lafkih, M. Ramzi, Adaptive Generalized Predictive Control of a heat exchanger pilot plant. IEEE Xplore Digital Library, 2011. DOI: 10.1109/ICMCS.2011.5945715 DOI: https://doi.org/10.1109/ICMCS.2011.5945715
  8. D. Kajzr, M. Diblík, L. Beran, L. Hubka, The possibilities for design and implementation of multivariate control for a level control in a double tank process. IEEE Xplore Digital Library, 2016.
  9. DOI: 10.1109/CarpathianCC.2016.7501112 DOI: https://doi.org/10.1109/CarpathianCC.2016.7501112
  10. J. Nandong, Synthesis of multivariable PID controllers via inter-communicative decentralized multi-scale control for TITO processes. IEEE Xplore Digital Library, 2015. DOI: 10.1109/ASCC.2015.7244403 DOI: https://doi.org/10.1109/ASCC.2015.7244403
  11. C. Fu, W. Tan, Partially decentralized control based on IMC for a benchmark boiler. IEEE Xplore Digital Library, 2015.
  12. DOI: 10.1109/CCDC.2015.7161662 DOI: https://doi.org/10.1109/CCDC.2015.7161662
  13. M. Sirsat, B. Parvat, C. Kadu, Design of decentralized PI controller for two-input, two-output processes. IEEE Xplore Digital Library, 2015.
  14. DOI: 10.1109/ICESA.2015.7503390 DOI: https://doi.org/10.1109/ICESA.2015.7503390
  15. S. Datta, U. Nath, C. Dey, Design and implementation of decentralized IMC-PI controllers for real time coupled tank process. IEEE Xplore Digital Library, 2015. DOI: 10.1049/cp.2015.1613 DOI: https://doi.org/10.1049/cp.2015.1613

Downloads

Download data is not yet available.