Skip to main navigation menu Skip to main content Skip to site footer

Development of a computer application for the calculation of the thermodynamic properties of the ammonia-water mixture

Abstract

The design and optimization of energy systems are very important today. Some of these systems use the ammonia-water mixture as working fluid, therefore, calculation of the thermodynamic properties becomes indispensable for its evaluation, design and optimization. In the present work an application has been developed in ExcelTM using Visual Basic (VBA) from a formulation based on free Gibbs Energy of Excess, in order to simulate different systems such as cooling, air conditioning, heat pumps, cogeneration and power cycles, without to acquire commercial simulators for this purpose. To validate this program, the results were compared with data obtained by the National Institute of Standards and Technology (NIST) software and experimental data reported in the literature.

Keywords

Ammonia-water mixture, thermodynamic properties, Gibb free energy, enthalpy, entropy

PDF (Español)

References

  1. A. Rivera, J. Cerezo, R. Rivero, J. Cervantes y R. Best, “Single Stage and Double Absorption heat transformers used to recover energy in a distillation column of butane and pentane”, Int J of Energy Research, vol. 27, pp. 1279-1292, 2003. doi: https:// doi.org/10.1002/er.943 DOI: https://doi.org/10.1002/er.943
  2. A.I. Kalina, “Combined cycle and waste-heat recovery power systems based on a novel thermodynamic energy cycle utilizing low-temperature heat for power generation”, ASME paper n.º 83-JPGC-GT-3, 1983. DOI: https://doi.org/10.1115/83-JPGC-GT-3
  3. S. Stecco y U. Desideri, “A thermodynamic analysis of the kalina cycles: comparisons, problems and perspectives”. Presentado en Gas Turbine and Aeroengine Congress and Exposition ASME, 1989. DOI: https://doi.org/10.1115/89-GT-149
  4. J. Hernández, C. Heard y R. Rivero, “Exergoeconomic comparison of a combined cycle cogeneration system with absorption refrigeration turbine inlet air cooling. Presentado en 16th International Conference on Efficiency, Costs, Optimization, Simulation and Environmental impact of energy systems. Copenhagen, Denmark, ECOS, 2003.
  5. R. Tillner-Roth y G. Friend, “Survey and Assesment of available measurements on thermodynamic properties of the mixture {Water+Ammonia}”, J Phys Chem Ref Data vol. 27, n.º 1, pp. 45-61, 1998. doi: https://doi.org/10.1063/1.556014 DOI: https://doi.org/10.1063/1.556014
  6. E. Thorin, “Thermophysical properties of ammonia-water mixtures for prediction of heat transfer areas in power cycles”, Int J Thermophys vol. 22, n.º 1, pp. 201-214, 2001. doi: https://doi.org/10.1023/A:1006745100278 DOI: https://doi.org/10.1023/A:1006745100278
  7. R.A. Macris, B.E. Eakin, R.T. Ellington y J. Huebler, “Physical and thermodynamic properties of ammonia-water mixtures” Research Bulletin Inst. of Gas Technology, n.º 14, 1964.
  8. R.T. Ellington, G. Kinst, R.E. Peck y J.F. Reed, “The absorption cooling process”, Research Bulletin Institute of Gas Technology, 1957.
  9. R. Tillner-Roth y G. Friend, “A Helmholtz free energy formulation of the thermodynamic properties of the mixture {Water+Ammonia}” J Phys Chem Ref Data, vol. 27, n.º 1, pp. 63-96, 1998. doi: https:// doi.org/10.1063/1.556015 DOI: https://doi.org/10.1063/1.556015
  10. S.H. Risvi y R.A. Heidemann, “Vapor-Liquid equilibria in the ammonia-water system”, J Chem Eng Data, vol. 32, 183-191, 1987. doi: https://doi. org/10.1021/je00048a017 DOI: https://doi.org/10.1021/je00048a017
  11. A. Vidal, R. Best, R. Rivero y J. Cervantes, “Analysis of a combined power and refrigeration cycle by the exergy method”, Energy, vol. 31, pp.
  12. , 2006. doi: https://doi.org/10.1016/j.energy.2006.03.001 DOI: https://doi.org/10.1016/j.energy.2006.03.001
  13. J. Pátek y J. Klomfar, “Simple functions for fast calculations of selected thermodynamic properties of the ammonia-water system”, Int J Refrig, vol. 18, n.º 4, pp. 228-234, 1995. doi: https://doi.org/10.1016/0140-7007(95)00006-W DOI: https://doi.org/10.1016/0140-7007(95)00006-W
  14. K. Sadhukhan, A.K. Chowdhuryi y B.K. Mandal, “Computer Based Thermodynamic Properties of Ammonia-Water Mixture for the Analysis of Power and Refrigeration Cycles”, International Journal of Thermodynamics, vol. 15, n.º 3, pp. 133-139, 2012. DOI: https://doi.org/10.5541/ijot.375 DOI: https://doi.org/10.5541/ijot.375
  15. E. Thorin, “Comparison of correlations for predicting thermodynamic properties of ammonia-water mixtures”, Int J Thermophys, vol. 21, n.º 4, pp. 853-870, 2000. doi: https://doi. org/10.1023/A:1006658107014 DOI: https://doi.org/10.1023/A:1006658107014
  16. E. Thorin, C. Dejfors, and G. Svedberg, “Thermodynamic properties of ammonia-water mixtures for power cycles”, Int J Thermophys, vol. 19, no. 2, pp. 501-510, 1998. https://doi. org/10.1023/A:1022525813769 DOI: https://doi.org/10.1023/A:1022525813769
  17. G.S. Alamdari, “Simple functions for predicting the thermodynamic properties of ammonia-water mixure”, IJE Transactions A: Basics vol. 20 n.º 1, pp. 95-104, 2007.
  18. G.S. Alamdari, “Simple equations for predicting entropy of ammonia-water mixure”. IJE Transactions B: Applications, vol. 20, n.º 1, 97-106, 2007.
  19. A.A. Zatorskii, “Algorithm for calculation of the parameters of the junction points of the cycles of absorption-type water-ammonia refrigeration machines in a digital computer”, Plenum Publishing Corporation, pp. 716-719, 1979. DOI: https://doi.org/10.1007/BF01155981
  20. K.E. Herold, K. Hain y M.J. Moran, “AMMWAT: A computer program for calculating the thermodynamic properties of ammonia and water mixtures using a Gibbs Free Energy formulation”, ASME vol. 4, pp. 65-75, 1988.
  21. Y.M. Park y R.E. Sonntag, “Thermodynamic properties of ammonia-water mixtures: a generalized equation-of-state approach”, ASME Trans, vol. 97, pp. 150-159, 1991.
  22. S.N. Mumah, S.S. Adefila y E.A. Arinze, “Properties generation procedures for first and second law analyses of ammonia-water heat pump system”, Energy Convers Mgmt, vol. 35, pp. 727736, 1994. doi:https://doi.org/10.1016/01968904(94)90058-2 DOI: https://doi.org/10.1016/0196-8904(94)90058-2
  23. A. Nowarski y D.G. Friend, “Application of the Extended Corresponding States Method to the Calculation of the Ammonia-Water Mixture Thermodynamic Surface”, International Journal of Thermophysics, vol. 19, pp. 1133-1142, 1998. doi: https://doi.org/10.1023/A:1022641709904 DOI: https://doi.org/10.1023/A:1022641709904
  24. R.M. Enick, G.P. Donahey y M. Holsinger, “Modeling the High-Pressure Ammonia-Water System with WATAM and the Peng-Robinson Equation of Sstate for Kalina Cycle Studies”, Ind Eng Chem Res, vol. 37, pp. 1644-1650, 1998. doi: https://doi. org/10.1021/ie970638s DOI: https://doi.org/10.1021/ie970638s
  25. L.A. Weber, “Estimating the virial coefficients of the ammonia + water mixture”, Fluid Phase Equilibria, vol. 162, pp. 31-49, 1999. doi: https://doi. org/10.1016/S0378-3812(99)00181-8 DOI: https://doi.org/10.1016/S0378-3812(99)00181-8
  26. F. Xu, y D.Y. Goswami, “Thermodynamic properties of ammonia-water mixtures for power-cycle applications”, Energy, vol. 24, pp. 525-536, 1999. doi: https://doi.org/10.1016/S0360-5442(99)00007-9 DOI: https://doi.org/10.1016/S0360-5442(99)00007-9
  27. R. Sharma, D. Singhal, R. Ghosh y A. Dwivedi, “Potential applications of artificial neural networks to thermodynamics: vapor–Liquid equilibrium predictions”, Computers and Chemical Engineering, vol. 23, pp. 385-390, 1999.doi:https://doi. org/10.1016/S0098-1354(98)00281-6 DOI: https://doi.org/10.1016/S0098-1354(98)00281-6
  28. R. Lugo, J. Guilpart y L. Fournaison, “Calculation method of thermophysical properties of ammo
  29. nia-water mixtures”, Presentado en Second Workshop on Ice Slurries, Paris France, International Institute of Refrigeration, 2000.
  30. A.A. Vasserman, A.G. Slynko, S.V. Bodyul, Yu.V. Gondarenko y E.S. Bodyul, “A Thermophysical Property Databank for Technically Important Gases and Liquids”, International Journal of Thermodynamics, vol. 22, pp. 477-485, 2001. doi: https:// doi.org/10.1023/A:1010774831521 DOI: https://doi.org/10.1023/A:1010774831521
  31. R. Lugo, L. Fournaison, J.M. Chourot y J. Guilpart, “An excess function method to model the thermophysical properties of one-phase secondary refrigerants”, International Journal of Refrigeration, vol. 25, pp. 916-923, 2002. doi: https://doi. org/10.1016/S0140-7007(01)00105-0 DOI: https://doi.org/10.1016/S0140-7007(01)00105-0
  32. R. Span y W. Wagner, “Equations of State for Technical Applications. I. Simultaneously Optimized Functional Forms for Nonpolar and Polar Fluids”, Int J of Thermophysics, vol. 24, pp. 1-39, 2003. doi: https://doi.org/10.1023/A:1022390430888 DOI: https://doi.org/10.1023/A:1022390430888
  33. R. Span y W. Wagner, “Equations of State for Technical Applications. III. Results for Polar Fluids”, Int J of Thermophysics, vol. 24, pp. 111-162, 2003, doi: https://doi.org/10.1023/A:1022362231796 DOI: https://doi.org/10.1023/A:1022362231796
  34. M. Barhoumi, A. Snoussi, E.N. Ben, K. Mejbri y A. Bellagi, “Modélistion des données thermodynamiques du mélange ammoniac/eau”, Int J Refrig, vol. 27, pp. 271-283, 2004. doi: https://doi. org/10.1016/j.ijrefrig.2003.09.005 DOI: https://doi.org/10.1016/j.ijrefrig.2003.09.005
  35. Kh. Mejbri y A. Bellagi, “Modelling of the thermodynamic properties of the water-ammonia mixture by three different approaches”. Int J Refrig, vol. 29, pp. 211-218, 2006. doi: https://doi.org/10.1016/j. ijrefrig.2005.06.002 DOI: https://doi.org/10.1016/j.ijrefrig.2005.06.002
  36. A. Sencan, “Artificial intelligent methods for thermodynamic evaluation of ammonia-water refrigeration system”, Energy Conv & Man, vol. 47, pp. 3319-3332, 2006. doi: https://doi.org/10.1016/j. enconman.2006.01.002 DOI: https://doi.org/10.1016/j.enconman.2006.01.002
  37. A.H. Farrokh-Niae, H. Moddarress y M. MohsenNia, “A three-parameter cubic equation of state for prediction of thermodynamic properties of fluids”. J Chem Thermodynamics, vol. 40, pp. 84-95, 2008. doi: https://doi.org/10.1016/j.jct.2007.05.012 DOI: https://doi.org/10.1016/j.jct.2007.05.012
  38. N.S. Ganesh y T. Srinivas, “Evaluation of thermodynamic properties of ammonia-water mixture up to 100 bar for power application systems”, Journal of Mechanical Engineering Research, vol. 3, no. 1, pp. 25-39, 2011.
  39. S. Kherris, M. Makhlouf, D. Zebbar y O. Sebbane, “Contribution study of the thermodynamics properties of the ammonia-water mixtures”, Thermal Science, vol. 17, n.º 3, pp. 891-902, 2013. doi: https://doi.org/10.2298/TSCI110206083K DOI: https://doi.org/10.2298/TSCI110206083K
  40. F. Li, L. Duanmu, L. Fu y X.L. Zhao, “Research and application of flue gas waste heat recovery in cogeneration based on absorption heat-exchange”, Procedia Engineering, vol. 146, pp. 594-603, 2016. doi: https://doi.org/10.1016/j.proeng.2016.06.407 DOI: https://doi.org/10.1016/j.proeng.2016.06.407
  41. A. Modi y F. Haglind, “A review of recent research on the use of zeotropic mixtures in power generation systems”, Energy Conversión and Management, vol. 138, pp. 603-626, 2017. doi: 10.1016/j. enconman.2017.02032 DOI: https://doi.org/10.1016/j.enconman.2017.02.032
  42. A. Rattner y S. Garimella, “Fast, stable computation of thermodynamic properties of ammonia-water mixtures”, International Journal of Refrigeration, 2015. doi: https://doi.org/10.1016/j. ijrefrig.2015.09.009
  43. M. Wang, A. Manera, S. Qiu y G.H. Su, “Ammonia-water mixture property code (AWProC) development, verification and Kalina cycle design for nuclear power plant”, Progress in Nuclear Energy vol. 91, pp. 26-37, 2016. DOI: 10.1016/j.pnucene.2016.04002 DOI: https://doi.org/10.1016/j.pnucene.2016.04.002
  44. O.M. Ibrahim y S.A. Klein, “Thermodynamic properties of ammonia-water mixtures”, ASHRAE Trans, pp. 1495-1502, 1993.
  45. Y.M. El-Sayed y M. Tribus, “Thermodynamic properties of water ammonia mixtures theoretical implementation for use in power cycles analysis”, Special publication AES New York, ASME, n.º 1, pp. 89-95, 1985.
  46. B. Ziegler y Ch. Trepp, “Equation of state for ammonia-water mixtures”, Int J Refrig, vol. 7, pp. 101-106, 1984. doi: https://doi.org/10.1016/01407007(84)90022-7 DOI: https://doi.org/10.1016/0140-7007(84)90022-7
  47. S.C Chapra y R.P. Canale, “Métodos numéricos para ingenieros”. Quinta Edición (Español), Mc Grau Hill Interamericana, México, 2007.
  48. P.C. Gillespie, W.V. Wilding y G.M. Wilson, “Vapor-Liquid equilibrium measurements on the ammonia-water system from 313 K to 589 K”. AIChE Symp Ser, vol. 83, n.º 256, pp. 97-127, 1987.
  49. J. Pospisil y Z. Fortelny, “Graphical expression of thermodynamic characteristics of absorption process in ammonia-water system”, EPJ Web of Conference, vol. 25, 01079(1)-01079(8), 2012. DOI:10.1051/eojconf/20122501079. DOI: https://doi.org/10.1051/epjconf/20122501079
  50. A. Sencan, S. Gök y E. Dikmen, “Prediction of liquid and Vapor Enthalpies of Ammonia-water Mixture”, Energy Source, Part A, vol. 33, pp. 1463-1473, 2011. doi:https://doi.org/10.1080/15567030903397891 DOI: https://doi.org/10.1080/15567030903397891
  51. K.H. Kim, K. Kim y H.J. Ko, “Entropy and exergy analysis of a heat recovery vapor generator for ammonia-water mixtures”, Entropy, vol. 16, pp. 20562070, 2014. DOI: 10.3390/e16042056 DOI: https://doi.org/10.3390/e16042056
  52. R.C.E. Campos, P.J.C. Escobar, S.C. Rodríguez, M. Leme, O.J. Venturini, L.E. Silva, C.V. Melián, D. dos S. Marques, D.F.R. Lofrano y V. Gialluca, “Exergetic and economic analysis of Kalina cycle foor low temperatura geotermal source in Brazil”, Presentado en Procedings of ECOS 2012. The 25th International conference on efficiency, cost, optimization, simulation and environmental impact of energy systems. Perugia, Italy, 2012.
  53. V. Srikanth, B.R. Narender y A. Gupta, “Thermodynamic Analysis of vapour absorption refrigeration system using solar energy”, International Journal of Latest Trends in Engineering and Thechnology, vol. 7, n.º 4, pp. 17-26, noviembre 2016. DOI: 10.21172/1.74003 DOI: https://doi.org/10.21172/1.74.003
  54. L. Becker y C.J.L. Corrales, “Fundamental EoS Implementation for {Water+ammonia} in Modelica”, Presentado en Proceedings of the 11th International Modelica Conference, September 21-23, pp. 647-652, 2015. doi: https://doi.org/10.3384/ ecp15118647
  55. M.A.I. El-Shaarawi, S.A.M. Said y M.U. Siddiqui, “New Correlation Equations for Ammonia-Water Vapor-Liquid Equilibrium (VLE) Thermodynamic Properties”, ASHRAE, DA-13-025, 2013.
  56. D. Kong, J. Liu, L. Zhang, H. He y Z. Fang, “Thermodynamic and Experimental Analysis of an Ammonia-Water Absorption Chiller”, Energy and Power Engineering, vol. 2, pp. 298-305, 2010. doi: https:// doi.org/10.4236/epe.2010.24042. DOI: https://doi.org/10.4236/epe.2010.24042
  57. L. Luo, H. Gao, Ch. Liu y X. Xu, “Parametric investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat From Nuclear Closed Brayton Cycle”, Science and Technology of Nuclear Installations, 2016. doi: https://doi.org/10.1155/2016/6790576 DOI: https://doi.org/10.1155/2016/6790576
  58. R. Rivero, G. Montero y R. Pulido, “Terminología para la Aplicación del Método de Exergia”, Revista del IMIQ, vol. 17, pp. 7-11, 1990.

Downloads

Download data is not yet available.