APLICACIONES DE LA INDUSTRIA 4.0 EN LA ESTANDARIZACIÓN DEL PROCESO PRODUCTIVO DE LAS MERMELADAS
Resumo
El presente artículo tiene como objetivo ilustrar una de las tantas aplicaciones de la Industria 4.0 mediante el uso de procedimientos analíticos multivariados y modelos de aprendizaje automático multirrespuesta, como un camino para analizar, modelar y estandarizar las relaciones entre las distintas variables de entrada y de salida que gobiernan la formulación de las mermeladas. Este trabajo de investigación es llevado a cabo en una compañía dedicada a la producción y comercialización de productos agropecuarios, describe la metodología de estudio utilizada que permitió hallar los rangos
de valores para los niveles de azúcar (°Bx) y acidez (pH) que satisfacen matemática y estadísticamente los parámetros de liberación de producto terminado definidos por la misma compañía.
Palavras-chave
consistencia, estándares, grados Brix, mermeladas, modelos, pH, variables
Biografia do Autor
Ángel Isaac Burgos Naranjo
Ángel Burgos-Naranjo es alumni de la Universidad San Francisco de Quito USFQ –Ecuador. Es graduado con honores de la carrera de Ingeniería Industrial, y cuenta con una subespecialización en el grado de Ingeniería Mecánica. Fue coordinador del departamento de Tutorías del capítulo estudiantil #734 USFQ IISE, miembro del Instituto de Ingenieros Industriales y de Sistemas de Estados Unidos (IISE), y asistente de cátedra. Hoy es consultor de negocio en Management Solutions, y se dedica a la optimización y automatización de distintas tipologías de procesos empresariales. Sus intereses giran alrededor de la ejecución de proyectos estratégicos y de mejora continua en las industrias energética, financiera, aseguradora y farmacéutica.
Daniel Sebastián Vásquez Játiva
Daniel Sebastián Vásquez Játiva es alumni de la Universidad San Francisco de Quito USFQ – Ecuador. Es consultor en Management Solutions, donde realiza proyectos de consultoría con enfoque en machine learning y manejo de datos. Es Ingeniero Industrial, con minor en Psicología, graduado con honores. Daniel estudió un año en la Universidad de Illinois en Urbana-Champaign, USA, como estudiante de intercambio. Sus intereses se centran en el manejo de datos, machine learning, big data, así como en la industria financiera y el mejoramiento de la calidad.
Danny Orlando Navarrete Chávez
Navarrete es Profesor Asociado en el departamento de Ingeniería Industrial de laUni versidad San Francisco de Quito USFQ – Ecuador, donde enseña cursos en pregrado y posgrado. Es miembro de Instituto de Ingenieros Industriales y de Sistemas de Estados Unidos (IISE), faculty advisor del capítulo estudiantil #734 USFQ IISE y miembro activocolaborador en el Instituto para la Innovación en Productividad y Logística (CATENA). Cuenta con dos maestrías en Ciencia de Alimentos & Nutrición Humana e Ingeniería General ambas de la Universidad de Illinois en Urbana-Champaign, USA. Tiene dos títulos de pregrado uno en Ingeniería Industrial y otro en Ingeniería Química Industrial, ambos de la Universidad San Francisco de Quito USFQ en Ecuador. Sus intereses de investigación son estadística aplicada en diseño experimental, diseño de nuevos productos, Lean Six Sigma, gestión de calidad, pruebas de consumidos y métodos sensoriales. Ha publicado 5 artículos revisados por pares en revistas internacionales de alto prestigio.
Referências
- V. Fuster, (2004). Mermeladas y confituras. En P. López, J. Boatella, y R. Codony, Química y bioquímica de los alimentos II (pág. 105). Barcelona: Edicions Universitat Barcelona.
- R. Baker, D. Barrett, N. Berry y Y. Hui, (2005). Fruit preserves and jams. En D. Barrett, L. Somogyi, y H. Ramaswamy, Processing fruits: science and technology (p. 113). Boca Raton: CRC Press LLC.
- J. Garrido, D. Genovese y J. Lozano, (2015). Effect of formulation variables on rheology, texture, color, and acceptability of apple jelly: Modelling and optimization. Food Science and Technology, 325- 332. DOI: https://doi.org/10.1016/j.lwt.2014.07.010
- Instituto Ecuatoriano de Normalización INEN. (2013). Norma para las confituras, jaleas y mermeladas. Disponible en: https://www.normalizacion.gob.ec/ buzon/normas/nte-inen-2825.pdf
- V. De Araújo Calado, D. Granato y B. Jarvis, (2014). Observations on the use of statistical methods in food science and technology. Food Research International, 137-149. DOI: https://doi.org/10.1016/j.foodres.2013.10.024
- J. Bower, (2013). Statistical methods for food science: Introductory procedures for the food practitioner. New Jersey: John Wiley & Sons, Inc. DOI: https://doi.org/10.1002/9781118541593
- I. Arvanitoyannis, S. Kallithraka, M. Katsota, E. Psarra y E. Soufleros, (1999). Application of quality control methods for assessing wine authenticity: Use of multivariate analysis (chemometrics). Trends in Food Science & Technology, 321-336. DOI: https://doi.org/10.1016/S0924-2244(99)00053-9
- G. Bagur, L. Cuadros, A. González y A. Jiménez, (2019). Alternative data mining/machine learning methods for the analytical evaluation of food quality and authenticity – A review. Food Research International, 25-39. DOI: https://doi.org/10.1016/j.foodres.2019.03.063
- S. Martinez, A. Moreno, D. Cazares & R. Winkler, (2017). Automated chemical fingerprinting of Mexican spirits derived from agave (tequila and mezcal) using direct-injection electrospray ionization (DIESI) and low-temperature plasma (LTP) mass spectrometry. Analytical Methods. DOI: https://doi.org/10.1039/C7AY00793K
- F. Botchway, F. Han, X. Huang y E. Teye,(2014). Discrimination of cocoa beans according to geographical origin by electronic tongue and multivariate algorithms. Food Analysis Methods, 360-365. DOI: https://doi.org/10.1007/s12161-013-9634-4
- G. Shmueli, (2010). To explain or to predict? Statistical Science, 289-310. DOI: https://doi.org/10.2139/ssrn.1351252
- G. Shmueli y O. Koppius, (2006). Predictive analytics in information systems research. Paphos: Conference on Information Systems and Technology.
- W. Graham y A. MacGillivray, (1969). Brix Determination. Proceedings of The South African Sugar Technologists’ Association, 215-2018.
- E. Álzate, R. Escobar y J. Montes (2012). Acondicionamiento del sensor de pH y temperatura para realizar titulaciones potenciométricas. Scientia Et Technica, vol. XVII, núm. 51, agosto, 20212, pp. 188-196. Universidad Tecnológica de Pereira. Pereira, Colombia.
- P. Jordano, (2000). Fruits and frugivory. En M. Fenner, Seeds: The ecology of regeneration in plant communities (pp. 125-166). Wallingford: CABI Publ. DOI: https://doi.org/10.1079/9780851994321.0125
- H. Wickham, (2014). Tidy data. Journal of Statistical Software, 1-24. DOI: https://doi.org/10.18637/jss.v059.i10
- P. Bruce, P. Gedeck, N. Patel y G. Shmueli, (2020). Data mining for business analytics. Hoboken: John Wiley & Sons.
- P. Dattalo, (2013). Analysis of multiple dependent variables. New York: Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199773596.001.0001
- P. McCullagh y J. Nelder, (1989). Generalized linear models. Boca Raton: Chapman & Hall/CRC. DOI: https://doi.org/10.1007/978-1-4899-3242-6
- J. Prakash, (2018). Breaking the curse of small datasets in machine learning. Available in: Towards Data Science: https://towardsdatascience.com/breaking-the-curse-of-small-datasets-in-machine-learning-part-1-36f28b0c044d
- B. Kenkel, (2016). Higher order terms. Available in: Reintroduction to linear regression: http://bkenkel. com/psci8357/notes/04-higher-order.html
- D. Montgomery, E. Peck y G. Vining, (2015). Introduction to linear regression analysis. New Jersey: John Wiley & Sons.
- W. Chin, (1998). The partial least squares approach for structural equation modeling. En G. Marcoulides, Modern Methods for Business Research (pp. 295- 236). London: Lawrence Erlbaum Associates.
- J. Cohen, (1998). Statistical power analysis for the behavioral sciences. New York: Lawrence Erlbaum Associates Publishers.
- Douglas C. Montgomery, (2013). Design and analysis of experiments. New York: Wiley.