Amaryllidaceae: Potential Source of Alkaloids. Biological and Pharmacological Activities
Abstract
Plants of Amaryllidaceae family have gained importance for being used as ornamentals, for having flowers and a showy appearance, in addition to their extensive pharmacological properties. The genera mainly studied are Amaryllis, Crinum, Galanthus, Narcisus, Bruganvigia and Lycoris. They produce alkaloids having as primary precursors L-phenylalanine and L-Tyrosine, which give rise to the main carbon skeleton called norbelladine, which through oxidation of the coupling of phenol, generates structures with ortho-para 'type positions, for - ortho 'and para - para', grouping the types of isoquinolic alkaloids, such as liquorine, homolicorin, crinine, haemantamine, tazetine, narcyclasin, montanin and galantamine. These alkaloids have antiviral, antimicrobial, cytotoxic, anticonvulsant, antitumor, hypotensive, and anti-inflammatory activity. The main alkaloid of this family is galantamine, being produced from the plants Leucojum sativum or Narcissus pseudonarcissus, and used therapeutically to inhibit the activity of acetylcholinesterase, counteracting the symptoms caused by the damage of the nervous system by Alzheimer's disease.
Keywords
Secondary metabolism, isoquinolines, galantamine, phytochemistry, Alzheimer's disease, alzheimer's disease
References
Antoun, M. D., Mendoza, N. T., Ríos, Y. R. & Proctor, G. R. (1993). Cytotoxicity of Hymenocallis Expansa Alkaloids. Journal of Natural Products. 56, 1423-1425.
Arango, G. J. (2008). Alcaloides y compuestos nitrogenados. Facultad de Química Farmacéutica, Universidad de Antioquia.
Arrigoni, O., Arrigoni-Liso, R. & Calabrese, G. (1975). Lycorine as an Inhibitor of Ascorbic Acid Biosynthesis. Nature, 256, 513-514.
Arroyo, S. C. & Cutler, D. F. (1984). Evolutionary and Taxonomic Aspects of the Internal Morphology In the Amarillidaceae from South American and Southern Africa. Kew Bulletin. 39, 467-498.
Barton, D. H. R., Kirby, G. W., Taylor, J. B. & Thomas, G. M. (1963). Phenol Oxidation and Biosynthesis. Part VI. The Biogenesis of Amaryllidaceae Alkaloids. J. Chem. Soc., 4545.
Bastida, J., Berkov, S., Torras, L., Pigni, N. B., de Andrade, J. P., Vanessa Martínez V. & Viladomat, F. (2011). Chemical and Biological Aspects of Amaryllidaceae Alkaloids. In D. Muňoz-Torrero (ed), Recent Advances in Pharmaceutical Sciences. Transworld Research Network.
Bisama, I.R.L. (2017). Quimiotaxonomía de Amaryllidaceae chilenas: alcaloides como marcadores taxonómicos. (Tesis de doctorado). Universidad de Concepción. Facultad de Ciencias Naturales y Oceanográficas-Programa de Doctorado en Ciencias Biológicas área Botánica. http://repositorio.udec.cl/handle/11594/2844
Bruneton, J. (1987). Eléments de Phytochimie et de Pharmacognosie. Ed. Technique et Documentation -Lavoisier.
Cahlíková, L., Valterová, I., Macáková, K., & Opletal, L. (2011). Analysis of Amaryllidaceae Alkaloids from Zephyranthes Grandiflora by GC/MS and their Cholinesterase Activity. Revista Brasileira de Farmacognosia, 21(4), 575-580.
Cedrón, M. J. A. B. (2010). The Alkaloids. In Chemistry and Biology of Pancratium Alkaloids (pp. 2-6). Elsevier.
Ceriotti, G. (1967). Narciclasine: An Antimitotic Substance from Narcissus Bulbs. Nature, 213, 595-596.
Chu, H. Y., Wegel, E., & Osbourn, A. (2011). From Hormones to Secondary Metabolism: The Emergence of Metabolic Gene Clusters in Plants. Plant Journal, 66(1), 66-79. https://doi.org/10.1111/j.1365-313X.2011.04503.x.
Desgagne-Penix, I. & Singh, A. (2012). Biosynthesis of the Amaryllidaceae Alkaloids. Plant Science Today 1(3), 114-120. https://doi.org/10.14719/pst.2014.1.3.41
Desgagne-Penix, I., Khan, M. F., Schriemer, D. C., Cram, D., Nowak, J., & Facchini, P. J. (2010). Integration of Deep Transcriptome and Proteome Analyses Reveals the Components of Alkaloid Metabolism In Opium Poppy Cell Cultures. BMC Plant Biology, 10, 252. https://doi.org/10.1186/1471-2229-10-252.
Dewick, P. M. (2009). Medicinal Natural Products: A Biosynthetic Approach (3rd ed.). John Wiley and Sons. https://doi.org/10.1002/9780470742761.
Dewick, P. M. (2002). Medicinal Natural Products: A Biosynthetic Approach (2nd. Ed.). John Wiley y Sons.
Dutilh, J. H. A. (1996). Biossistemática de quatro espécies de Hippeastrum Herb. (Amaryllidaceae). (Tese de doutorado). UNICAMP (SP).
Eichhorn, J., Takada, T., Kita, Y., & Zenk, M. H. (1998). Biosynthesis of the Amaryllidaceae Alkaloid Galanthamine. Phytochemistry, 49(4), 1037-1047. https://doi.org/10.1016/S0031-9422(97)01024-8
Elgorashi, E. E., Drewes, S. E., Morris, C. & Staden, J. V. (2003). Variation among Three Crinum Species in Alkaloid Content. Biochemical Systematics and Ecology. 31, 601-615.
Evidente, A., Andolfi, A., Abou-Donia, A. H., Touema, S. M., Hammoda, H. M., Shawky, E. & Motta, A. (2004). (-)-Amarbellisine, a lycorine-type Alkaloid from Amaryllis Belladonna L. Growing in Egypt. Phytochemistry, 65, 2113-2118. https://pubmed.ncbi.nlm.nih.gov/15279981/
Facchini, P. J. (2001). Alkaloid Biosynthesis in Plants: Biochemistry, Cell Biology, Molecular Regulation, and Metabolic Engineering Applications. Annual Review of Plant Physiology and Plant Molecular Biology. 52, 29-66. https://doi.org/10.1146/annurev.arplant.52.1.29.
Facchini, P. J., Huber-Allanach, K. L., & Tari, L. W. (2000). Plant Aromatic L-Amino Acid Decarboxylases: Evolution, Biochemistry, Regulation, and Metabolic Engineering Applications. Phytochemistry, 54(2), 121-138. https://doi.org/10.1016/S0031-9422(00)00050-9.
Fales, H. M. y Wildman, W. C. (1964). Amaryllidaceae Alkaloids and Colchicine. J. Am. Chem. Soc., 86, 105-112.
Fennell C. W. y van Staden, J. (2001). Crinum Species in Traditional and Modern Medicine. J. Ethnopharmacol. 78, 15-36. https://www.elsevier.com/
Fernández, J. L., & Groenendijk, J. P. (2004). A New Specie of Zephyranthes Herb. sl (Amaryllidaceae, Hippeastreae) with Notes on the Genus in Colombia. Rev. Acad. Colomb. Cienc. 28(107), 177-186.
Fuganti, C. & Mazza, M. (1971). Relative Stereochemistry of Protonation and Hydroxylation in the Biosynthesis of Lycorenine and Haemanthidine from Protocatechualdehyde. J. Chem. Soc. Chem. Commun, 19, 1196-1197.
Furusawa, E., Furusawa, S., Lee, J. Y. B. & Patanavanich, S. (1976). Proc. Soc. Exp. Biol. Med. 152, 186.
Furusawa, E., Irie, H., Combs, D. & Wildman, W. C. (1980). Therapeutic Activity of Pretazettine on Rauscher Leukemia: Comparison with the Related Amaryllidaceae Alkaloids. Chemotherapy, 26, 36.
Ghosal, S., Singh, S., Kumar, Y. & Srivastava, S. (1989). Occurrence of Two Epimeric Alkaloids and Metabolism Compared with Lycorine in Crinum Latifolium. Phytochemistry, 28, 2535-2537.
Ghosal, S., Shanthy, A. & Singh, S. K. (1988). Isocraugsodine, an n-arylidenephenethylamine from Crinum asiaticum and its e-z isomerism. Phytochemistry, 27(6), 1849-1852. https://doi.org/10.1016/0031-9422(88)80457-6.
Ghosal, S., Saini, K. S. & Razdan, S. (1985). Phytochemistry. 10, 2141-2156.
Grisebach, H. (1973). Comparative Biosynthetic Pathways in Higher Plants. Pure and Applied Chemistry, 34(3-4), 487-513. https://doi.org/10.1351/pac197334030487.
Gude, M., Hausen, B. M., Heitsch, H. & König, W. A. (1988). An Investigation of the Irritant and Allergenic Properties of Daffodils (Narcissus pseudonarcissus L., Amaryllidaceae). Contact Dermatitis, 19, 1.
Hagel, J. M., & Facchini, P. J. (2013). Benzylisoquinoline Alkaloid Metabolism: A Century of Discovery and a Brave New World. Plant and Cell Physiology. 54(5), 647-672. https://doi.org/10.1093/pcp/pct020.
Harken, R. D., Christensen, C. P. & Wildman, W. C. (1976). Interconversions in the Pluviine-lycorenine Series. J. Org. Chem. 41, 2450–2454.
Heinrich, M., & Lee Teoh, H. (2004). Galanthamine from Snowdrop-the Development of a Modern Drug against Alzheimer's Disease from Local Caucasian Knowledge. Journal of Ethnopharmacology. 92(2-3), 147-162. https://doi.org/10.1016/j.jep.2004.02.012.
Herrera, M. R., Machocho, A. K., Brun, R., Viladomat, F., Codina, C., & Bastida, J. (2001). Crinane and lycorane Type Alkaloids from Zephyranthes citrina. Planta Medica, 67(2), 191-193. https://doi.org/10.1055/s-2001-11495.
Huaylla, H., Llalla, O., Torras-Claveria, L. & Bastida, J. (2020). Alkaloid Profile in Pyrolirion Albicans Herb. (Amaryllidaceae), a Peruvian Endemic Species. South African Journal of Botany, 000, 1-5. https://doi.org/10.1016/j.sajb.2020.03.016
Ivanov, I., Georgiev, V., & Pavlov, A. (2013). Elicitation of Galanthamine Biosynthesis by Leucojum Aestivum Liquid Shoot Cultures. Journal of Plant Physiology, 170(12), 1122-1129. https://doi.org/10.1016/j.jplph.2013.03.017
Ivanov, I., Georgiev, V., Berkov, S., & Pavlov, A. (2012). Alkaloid Patterns in Leucojum Aestivum Shoot Culture Cultivated at Temporary Immersion Conditions. Journal of Plant Physiology, 169(2), 206-211. https://doi.org/10.1016/j.jplph.2011.09.010
Jin, Z. (2013). Amaryllidaceae and Sceletium alkaloids. Natural Product Reports. 30(6), 849-868. https://doi.org/10.1039/c3np70005d
Konrath, E. L., Passos, C. d. S., Klein‐Júnior, L. C., & Henriques, A. T. (2013). Alkaloids as a Source of Potential Anticholinesterase Inhibitors for the Treatment of Alzheimer's Disease. Journal of Pharmacy and Pharmacology.
Kornienko, A. & Evidente, A. (2008). Chemistry, Biology, and Medicinal Potential of Narciclasine and its Congeners. Chemical Reviews, 108(6), 1982-2014. https://doi.org/10.1021/cr078198u.
Kuzniak, E. (2004). Ascorbate and Ascorbate-Dependent Enzymes in Detached Tomato Leaves under Conditions Modulating the Ascorbate Pool. Acta Physiol. Plant. 26, 327–333 p.
Liscombe, D. K., Louie, G. V. & Noel, J. P. (2012). Architectures, Mechanisms and Molecular Evolution of Natural Product Methyltransferases. Natural Product Reports. 29(10), 1238-1250. https://doi.org/10.1039/c2np20029e.
Meerow, A. W. (2004). Amaryllidaceae (Amaryllis family). Flowering Plants of the Neotropics. Princeton and Oxford.
Mikami, M., Kitahara, M., Kitano, M., Ariki, Y., Mimaki, Y., Sashida, Y., Yamazaki, M. & Yui, S. (1999). Biol. Pharm. Bull. 22, 674.
Nair, J. J., & Van Staden, J. (2013). Pharmacological and Toxicological Insights to the South African Amaryllidaceae. Food Chemistry and Toxicology, 62C, 262-275. https://doi.org/10.1016/j.fct.2013.08.042
Nair, J.J & Van Staden, J. (2019). Antiplasmodial Constituents in the Minor Alkaloid Groups of the Amaryllidaceae. South African Journal of Botany 126, 362-370. https://doi.org/10.1016/j.sajb.2019.06.012
Nair, J.J. & Van Staden, J. (2020a). Cytotoxic Tazettine Alkaloids of the Plant Family Amaryllidaceae. South African Journal of Botany, 000, 1-10. https://doi.org/10.1016/j.sajb.2020.07.002
Nair, J.J & Van Staden, J. (2020b). The Plant Family Amaryllidaceae as a Source of Cytotoxic Homolycorine Alkaloid Principles. South African Journal of Botany 000, 1-18. https://doi.org/10.1016/j.sajb.2020.07.013
Osorio, D. J. (2004-2006). Búsqueda de sustancias bioactivas a partir de dos especies de la flora colombiana: alcaloides de Phaedranassa dubuia (Amaryllidaceae) y Biflavonoides de Garcinia madurno (Clusiaceae). Javier Osorio Durango.
Paris, M. & Hurabielle, M. (1981). Abrégé de Matière Médicale – Pharmacognosie. tomos 1 y 2. Masson.
Pinto, A. C., Silva, D. H. S., Bolzani, V. S., Lopes, N. P. & Epifanio, R. A. (2002). Productos naturais: atualidade, desafios e perspectivas. Química Nova. 25, 45-61.
Puiatti, M., Borioni, J. L., Vallejo, M.G., Cabrera, J. L., Agnese, M.A., Ortega, M. G. & Pierini, A.B. (2013). Study of the Interaction of Huperzia saururus Lycopodium Alkaloids with the Acetylcholinesterase Enzyme. Journal of Molecular Graphics and Modelling. 44,136-144.
Reyes-Chilpa, R., Berkov, S., Hernández-Ortega, S., Jankowski, C. K., Arseneau, S., Clotet-Codina, I. & Bastida, J. (2011). Acetylcholinesterase-inhibiting Alkaloids from Zephyranthes Concolor. Molecules, 16(11), 9520-9533. https://doi.org/10.3390/molecules16119520.
Rivero, N., Gómez, M. & Medina, J. D. (2004). Search for Bioactive Alkaloids in Hymenocallis Species. Pharmaceutical Biology, 42, 280-285.
Rhee, I. K., Van de Meent, M., Ingkaninam, K. & Verpoorte, R. (2001). Screening for Acetylcholinesterase Inhibitors from Amaryllidaceae using Silica Gel Thin-Layer Chromatography in Combination with Bioactivity Staining. Journal of Chromatography A. 915, 217-223.
Rojas-Vera, J.C., Buitrago-Díaz, A.A., Possamai, L.M., Timmers, L.F.S.M., Tallini, L.R. & Bastida, J. (2020). Alkaloid Profile and Cholinesterase Inhibition Activity of Five Species of Amaryllidaceae Family Collected from Mérida state-Venezuela. South African Journal of Botany 000, 1-11. https://doi.org/10.1016/j.sajb.2020.03.001
Rodríguez-Fonseca, C., Amils, R. & Garret, R. A. (1995). Fine Structure of the Peptidyl Transferase Centre on 23 S-like rRNAs Deduced from Chemical Probing of Antibiotic-Ribosome Complexes. J. Mol. Biol. 247, 224.
Shammari, L.Al., Hulcová, D., Marikova, J., Kucera, T., Safratova, M., Nováková, L., Schmitdt, M., Pulkráková, L., Janousek, J., Soukup, O., Kunes, J., Opletal, L. & Cahlíková, L. (2020). Amaryllidaceae Alkaloids from Hippeastrum X Hybridum CV. Ferrari, and Preparation of Vittatine Derivatives as Potential Ligands for Alzheimers Disease. South African Journal of Botany 000, 1-10. https://doi.org/10.1016/j.sajb.2020.06.024
Singh, A. & Desgagné-Penix, I. (2014). Biosynthesis of the Amaryllidaceae Alkaloids. Plant Science Today, 1(3), 114-120. http://dx.doi.org/10.14719/pst.2014.1.3.41
Sousa da Silva, M. S. (2009). Alcalóides de Plantas da Família Amaryllidaceae: Isolamento Caracterização e Testes de Inibição de Acetilcolinesterase. (Tese de doutorado). Universidade de Campinas (SP).
Szlávik, L., Gyuris, A., Minárovits, J., Forgo, P., Molnár, J. & Hohmann, J. (2004). Alkaloids from Leucojum Vernum and Antiretroviral Activity of Amaryllidaceae alkaloids. Planta Med. 70, 871.
Takos, A. M., & Rook, F. (2013). Towards a Molecular Understanding of the Biosynthesis of Amaryllidaceae Alkaloids in Support of their Expanding Medical Use. International Journal of Molecular Science, 14(6), 11713-11741. https://doi.org/10.3390/ijms140611713.
Tram, N. T. N., Titorenkova, T. V., Bankova, V. St., Handjieva, N. V. & Popov, S. S. (2002). Crinum L. (Amaryllidaceae). Fitoterapia. 73, 183-208.
Unver, N. (2007). New Skeletons and New Concepts in Amaryllidaceae Alkaloids. Phytochemistry Review. 6, 125-135.
Vázquez-Tato, M. P., Castedo, L. & Riguera, R. (1988). New Alkaloids from Pancratium maritimum. Heterocycles, 27, 2833-2838.
Vélez-Terranova, M., Campos-Gaona, R. & Sánchez-Guerrero, H. (2014). Uso de metabolitos secundarios de las plantas para reducir la metanogénesis ruminal. Tropical and Subtropical Agroecosystems, 17(3), 489-499. https://www.redalyc.org/pdf/939/93935728004.pdf
Weniger, B., Italiano, L., Beck, J. P., Bastida, J., Bergoñon, S., Codina, C., Lobstein, A. & Anton, R. (1995). Cytotoxic Activity of Amaryllidaceae Alkaloids. Planta Med. 61, 77.
Wildman, W. C. & Bailey, D. T. (1969). Amaryllidaceae Interconversions. Partial Syntheses of [2]benzopyrano[3,4-c]indoles. J. Am. Chem. Soc. 9, 150-157.
Youssef, D. T. A. & Frahm, A. W. (1998). Alkaloids of the Flowers of Pancratium Maritimum. Planta Med. 64, 669.
Ziegler, J. & Facchini, P. J. (2008). Alkaloid Biosynthesis: Metabolism and Trafficking. Annual Review of Plant Biology, 59, 735-769. https://doi.org/10.1146/annurev.arplant.59.032607.092730