Extraction of Bacterial DNA from Water Sources of Agricultural Use





microbiological, contamination, bacterial ADN, agricultural


Within the agricultural process different types of water bodies are used, therefore knowledge of crop productivity must include the understanding of the flow of microbiological material present in the used water sources. The last methodological approach aims at the identification of bacterial communities through the analysis of DNA sequences existent in environmental samples. Due to the high contamination that environmental samples may have, it is important to perform an optimal DNA extraction process that allows subsequent molecular analysis by PCR-based methods. For this reason, the objective of this article is to describe a chemical protocol for the extraction of bacterial DNA from water bodies used in local agricultural activities that is simple, efficient, and quick to apply to get good-quality DNA. Bacterial DNA was extracted from water samples obtained from Tota Lake (Boyacá, Colombia) using a modified chemical protocol and compared with a standard commercial method. As a result, bacterial DNA was obtained with a concentration higher than 140 ng/ul and a purity >1.7 A260/280, results which are similar to those obtained with the commercial standard method with a maximum concentration of 45.94 ng/ul and a purity higher than 1.8 A260/280. The results suggest that this DNA extraction protocol is a fast and low-cost method with which high quality and purity DNA is obtained that can be used in any molecular analysis.   


Download data is not yet available.


Bag, S., Saha, B., Mehta, O., Anbumani, D., Kumar, N., Dayal, M., . . . Das, B. (2016). An Improved Method for High Quality Metagenomics DNA Extraction from Human and Environmental Samples. Scientific Reports, 6, 26775-26775. http://dx.doi.org/10.1038/srep26775

Beckers, B., Op De Beeck, M., Thijs, S., Truyens, S., Weyens, N., Boerjan, W., & Vangronsveld, J. (2016). Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies. Frontiers in Microbiology, 7, 650-650. http://dx.doi.org/10.3389/fmicb.2016.00650

Bohorquez, L. C., Delgado-Serrano, L., López, G., Osorio-Forero, C., Klepac-Ceraj, V., Kolter, R., . . . Zambrano, M. M. (2012). In-depth Characterization via Complementing Culture-Independent Approaches of the Microbial Community in an Acidic Hot Spring of the Colombian Andes. Microbial Ecology, 63(1), 103-115. http://dx.doi.org/10.1007/s00248-011-9943-3

Boon, E., Whidden, C., Langille, M. G. I., Beiko, R. G., Meehan, C. J., & Wong, D. H. J. (2014). Interactions in the Microbiome: Communities of Organisms and Communities of Genes. FEMS Microbiology Reviews, 38(1), 90-118. http://dx.doi.org/10.1111/1574-6976.12035

Causarano, H. J., Shaw, J. N., Franzluebbers, A. J., Reeves, D. W., Raper, R. L., Balkcom, K. S., . . . Izaurralde, R. C. (2007). Simulating Field-Scale Soil Organic Carbon Dynamics Using EPIC. Soil Science Societies of America Journal, 71(4), 1174-1185. http://dx.doi.org/10.2136/sssaj2006.0356

Chaffron, S., Rehrauer, H., Pernthaler, J., & Von Mering, C. J. G. r. (2010). A Global Network of Coexisting Microbes from Environmental and Whole-Genome Sequence Data. Genome Res., 20(7), 947-959.

Chaudhary, A., Kauser, I., Ray, A., & Poretsky, R. (2018). Taxon-Driven Functional Shifts Associated with Storm Flow in an Urban Stream Microbial Community. mSphere, 3(4), e00194-00118. http://dx.doi.org/10.1128/mSphere.00194-18

Delgado-Serrano, L., López, G., Bohorquez, L. C., Bustos, J. R., Rubiano, C., Osorio-Forero, C., . . . Zambrano, M. M. (2014). Neotropical Andes Hot Springs Harbor Diverse and Distinct Planktonic Microbial Communities. FEMS Microbiology Ecology, 89(1), 56-66. http://dx.doi.org/10.1111/1574-6941.12333 %J FEMS Microbiology Ecology

Fennell, D. E., Du, S., Liu, F., Liu, H., & Häggblom, M. M. (2011). Dehalogenation of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans, Polychlorinated Biphenyls, and Brominated Flame Retardants, and Potential as a Bioremediation Strategy. Pergamon Press.

Fuhrman, J. A. (2009). Microbial Community Structure and its Functional Implications. Nature, 459(7244), 193-199. http://dx.doi.org/10.1038/nature08058

George, I., Stenuit, B., Agathos, S., & Marco, D. (2010). Application of Metagenomics to Bioremediation. Metagenomics: Theory, Methods and Applications, 1, 119-140.

Gilbert, J. A., Jansson, J. K., & Knight, R. (2014). The Earth Microbiome Project: Successes and Aspirations. BMC Biology, 12(1), 69. http://dx.doi.org/10.1186/s12915-014-0069-1

Gilbert, J. A., Meyer, F., Field, D., Schriml, L. M., & Garrity, G. M. (2010). Metagenomics: A Foundling Finds Its Feet. Standards in Genomic Sciences, 3(2), 212-213. http://dx.doi.org/10.4056/sigs.1213842

Hassan, M., Essam, T., & Megahed, S. (2018). Illumina Sequencing and Assessment of New Cost-Efficient Protocol for Metagenomic-DNA Extraction from Environmental Water Samples. Brazilian Journal of Microbiology: [publication of the Brazilian Society for Microbiology], 49 Suppl 1(Suppl 1), 1-8. http://dx.doi.org/10.1016/j.bjm.2018.03.002

Hu, Y., Liu, Z., Yan, J., Qi, X., Li, J., Zhong, S., . . . Liu, Q. (2010). A Developed DNA Extraction Method for Different Soil Samples. Journal of Basic Microbiology, 50(4), 401-407.

Huang, Q., Briggs, B. R., Dong, H., Jiang, H., Wu, G., Edwardson, C., . . . Quake, S. (2014). Taxonomic and Functional Diversity Provides Insight into Microbial Pathways and Stress Responses in the Saline Qinghai Lake, China. PLoS ONE, 9(11), 1-10. http://dx.doi.org/10.1371/journal.pone.0111681

Jiménez, D. J., Andreote, F. D., Chaves, D., Montaña, J. S., Osorio-Forero, C., Junca, H., . . . Baena, S. (2012). Structural and Functional Insights from the Metagenome of an Acidic Hot Spring Microbial Planktonic Community in the Colombian Andes. PLoS ONE, 7(12), 1-15. http://dx.doi.org/10.1371/journal.pone.0052069

Jiménez, D. J., Montaña, J. S., Álvarez, D., & Baena, S. (2012). A Novel Cold Active Esterase Derived from Colombian High Andean Forest Soil Metagenome. World Journal of Microbiology and Biotechnology, 28(1), 361-370. http://dx.doi.org/10.1007/s11274-011-0828-x

Kathiravan, M. N., Gim, G. H., Ryu, J., Kim, P. I., Lee, C. W., & Kim, S. W. (2015). Enhanced Method for Microbial Community DNA Extraction and Purification from Agricultural Yellow Loess Soil. J Microbiol, 53(11), 767-775. http://dx.doi.org/10.1007/s12275-015-5454-0

Kiersztyn, B., Chróst, R., Kaliński, T., Siuda, W., Bukowska, A., Kowalczyk, G., & Grabowska, K. (2019). Structural and Functional Microbial Diversity Along A Eutrophication Gradient of Interconnected Lakes Undergoing Anthropopressure. Scientific Reports, 9(1), 11144-11144. http://dx.doi.org/10.1038/s41598-019-47577-8

Miao, T., Gao, S., Jiang, S., Kan, G., Liu, P., Wu, X., . . . Yao, S. (2014). A Method Suitable for DNA Extraction from Humus-Rich Soil. Biotechnology Letters, 36(11), 2223-2228.

Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H., & Bellwood, D. R. (2013). A functional Approach Reveals Community Responses to Disturbances. Trends In Ecology & Evolution, 28(3), 167-177.

Pawlowski, J., Kelly-Quinn, M., Altermatt, F., Apothéloz-Perret-Gentil, L., Beja, P., Boggero, A., . . . Kahlert, M. (2018). The Futureof Biotic Indices in the Ecogenomic Era: Integrating (e)DNA Metabarcoding in Biological Assessment of Aquatic Ecosystems. Science of the Total Environment, 637-638, 1295-1310.
Payne, J. T., Millar, J. J., Jackson, C. R., & Ochs, C. A. (2017). Patterns of Variation in Diversity of the Mississippi River Microbiome over 1,300 Kilometers. PloS One, 12(3), e0174890-e0174890. http://dx.doi.org/10.1371/journal.pone.0174890

Peter, H., & Sommaruga, R. (2016). Shifts in Diversity and Function of Lake Bacterial Communities upon Glacier Retreat. The ISME Journal, 10(7), 1545-1554. http://dx.doi.org/10.1038/ismej.2015.245

Ranasinghe, C. P., Harding, R., & Hargreaves, M. (2015). An Improved Protocol for the Isolation of Total Genomic DNA from Labyrinthulomycetes. Biotechnology Letters, 37(3), 685-690.

Reed, H. E., & Martiny, J. B. H. (2013). Microbial Composition Affects the Functioning of Estuarine Sediments. The ISME Journal, 7(4), 868-868.

Röling, W. F. M., Van Breukelen, B. M., Bruggeman, F. J., & Westerhoff, H. V. (2007). Ecological Control Analysis: Being (S) in Control of Mass Flux and Metabolite Concentrations in Anaerobic Degradation Processes. Environmental Microbiology, 9(2), 500-511.

Sagar, K., Singh, S. P., Goutam, K. K., & Konwar, B. K. (2014). Assessment of Five Soil DNA Extraction Methods and a Rapid Laboratory-Developed Method for Quality Soil DNA Extraction for 16S rDNA-Based Amplification and Library Construction. Journal of Microbiological Methods, 97, 68-73.

Schmidt, J. E., Kent, A. D., Brisson, V. L., & Gaudin, A. C. M. (2019). Agricultural Management and Plant Selection Interactively Affect Rhizosphere Microbial Community Structure and Nitrogen Cycling. Microbiome, 7(1), 146. http://dx.doi.org/10.1186/s40168-019-0756-9

Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., . . . Nelson, W. (2004). Environmental Genome Shotgun Sequencing of the Sargasso Sea. Science, 304(5667), 66-74.

Zelaya-Molina, L. X., Ortega, M. A., & Dorrance, A. E. (2011). Easy and Efficient Protocol for Oomycete DNA Extraction Suitable for Population Genetic Analysis. Biotechnology Letters, 33(4), 715-720.



How to Cite

Forero Pineda, N., Marín - Suárez, J., Forero- Ulloa, F. E., & Gómez-Palacio, A. (2021). Extraction of Bacterial DNA from Water Sources of Agricultural Use. Ciencia Y Agricultura, 18(1), 36–45. https://doi.org/10.19053/01228420.v18.n1.2021.11703