Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Impatiens walleriana: perspectivas para el mejoramiento genético

Resumen

Impatiens walleriana is a plant of the Balsaminaceae family with high ornamental value. It presents very attractive flowers, which can be found in different shapes and colors, due to which, it is part of many gardens worldwide. Genetic improvement in this specie has usually been carried out by conventional methods, however, the advancement of technology has made possible the use of a large number of biotechnological and molecular tools. The objective of this review is to consolidate the bases for a genetic improvement program of I. walleriana. This review covers different aspects that are basic to incur in the genetic improvement of this species; these factors are floral morphology, pollination, karyotyping and studies of genetic variability. In addition, what is known to date about studies focused on genes involved in drought stress processes, tolerance to Plasmopara obducens and floral longevity is presented.

Palabras clave

Biotecnología, Transformación Genética, Morfología Floral, Ornamental, Genes Candidatos

XML (English) PDF

Citas

  1. Abrahamczyk S., Lozada-Gobilard S., Ackermann M., Fischer E., Krieger V., Redling A. y Weigend M. (2017). A question of data quality – testing pollination syndromes in Balsaminaceae. PLoS One, 12(10), e0186125. DOI: https://doi.org/10.1371/journal.pone.0186125 DOI: https://doi.org/10.1371/journal.pone.0186125
  2. Adamowski W. (2008). Balsams on the offensive: the role of planting in the invasion of Impatiens species. In Tokarska-Guzik B., Brock J. H., Brundu G., Child L., Daehler C. C. y Pyšek P. (eds), Plant invasions: human perception, ecological impacts and management (pp. 57-70). Leiden, Netherlands: Backhuys Publishers.
  3. Aldon D., Mbengue M., Mazars C. y Galaud J. P. (2018). Calcium signaling in plant biotic interactions. Int. J. Mol. Sci., 19(3), 665. DOI: https://doi.org/10.3390/ijms19030665 DOI: https://doi.org/10.3390/ijms19030665
  4. Antonic D., Miloševic S., Cingel A., Lojic M., Trifunovic-Momcilov M., Petric M. y Simonovic A. (2016). Effects of exogenous salicylic acid on Impatiens walleriana L grown in vitro under polyethylene glycol-imposed drought. S. Afr. J. Bot., 105, 226-233. DOI: https://doi.org/10.1016/j.sajb.2016.04.002
  5. Arisumi T. (1973). Chromosome numbers and interspecific hybrids among New Guinea Impatiens species. J. Hered., 64(2), 77-79. DOI: https://doi.org/10.1093/oxfordjournals.jhered.a108358
  6. Barrett B.A., Kidwell K.K. y Fox P.N. (1998). AFLP vs. pedigree based genetic diversity assessment methods. Crop Sci., 38, 1271-1278. DOI: https://doi.org/10.2135/cropsci1998.0011183X003800050026x
  7. Bhattarai K., Wang W., Cao Z. y Deng Z. (2018). Comparative Analysis of Impatiens Leaf Transcriptomes Reveal Candidate Genes for Resistance to Downy Mildew Caused by Plasmopara obducens. Int. J. Mol. Sci., 19(7), 2057. DOI: https://doi.org/10.3390/ijms19072057 DOI: https://doi.org/10.3390/ijms19072057
  8. Bicknell R. (1995). Breeding cut flower cultivars of Leptospermum using interspecific hybridization. New Zeal J Crop Hortic., 23, 412-421. DOI: https://doi.org/10.1080/01140671.1995.9513918
  9. Bigeard J., Colcombet J. y Hirt H. (2015). Signaling Mechanisms in Pattern-Triggered Immunity (PTI). Molecular Plant., 8(4), 521-539. DOI: https://doi.org/10.1016/j.molp.2014.12.022 DOI: https://doi.org/10.1016/j.molp.2014.12.022
  10. Blanco J. y Vázquez F.M. (2014). Impatiens balfourii Hook (Balsaminaceae) actuando como especie invasora en la Reserva Natural de la Garganta de los Infiernos (Extremadura). Bouteloua, 18, 100-105.
  11. Broome R., Sabir K. y Carrington S. (2007). Plants of the Eastern Caribbean. Online database. University of the West Indies, Barbados. http://ecflora.cavehill.uwi.edu/index.html
  12. CABI. (2019). Invasive Species Compendium. https://www.cabi.org/isc/datasheet/28769#tosummaryOfInvasiveness
  13. Carr J. y Korban S.S. (2004). Evaluating genetic relationships in seed impatiens, Impatiens walleriana, using AFLP profiling. Plant Breeding, 123, 577-581. DOI: https://doi.org/10.1111/j.1439-0523.2004.01018.x
  14. Carrodeguas A. y Zúñiga, A. (2020). Bases para la mejora genética en Gerbera hybrida. Repertorio Científico, 23(2), 62-51. DOI: https://doi.org/10.22458/rc.v23i2.3000
  15. Casanova E., Trillasa M.I., Moyseta L.L., Vainstein A. (2005). Influence of rol genes in floriculture. Biotechnology Advances, 23, 3-39. DOI: https://doi.org/10.1016/j.biotechadv.2004.06.002
  16. Chavan S. K., Singh A. y Barkule S. (2018). Genetic variability studies on Adenium obesum Forssk Roem & Schult. Asian. Jr. of Microbiol. Biotech. Env. Sc., 20(3), 965-969.
  17. Cubero J.I. (2003). Los poliploides en la mejora vegetal. In: Introducción a la mejora genética vegetal. Cap. 15. Ediciones Mundi-prensa. Madrid. España, 2003. p. 325-351.
  18. Cunnington J.H., Aldaoud R., Loh M., Washington W.S. y Irvine G., (2008). First record of Plasmopara obducens (downy mildew) on impatiens in Australia. Plant Pathology, 57(2), 371. DOI: https://doi.org/10.1111/j.1365-3059.2007.01630.x DOI: https://doi.org/10.1111/j.1365-3059.2007.01630.x
  19. DAISIE (2018). Delivering Alien Invasive Species Inventories for Europe. http://www.europe-aliens.org/
  20. Dan Y., Baxter A., Zhang S., Pantazis C. y Veilleux, R. (2010). Development of Efficient Plant Regeneration and Transformation System for Impatiens using Agrobacterium tumefaciens and multiple bud cultures as explants. BMC Plant Biol., 10: 165. DOI: https://doi.org/10.1186/1471-2229-10-165 DOI: https://doi.org/10.1186/1471-2229-10-165
  21. Daughtrey M., Beckerman J., Davis W.J., Rane K., Crouch J.A. (2020). Corroboration That Highly Resistant Impatiens Cultivars Are Not Immune to Downy Mildew Disease: A Report of Crop Losses from Two California Producers. Plant Health Progress, 21(3): 214-216. DOI: https://doi.org/10.1094/PHP-05-20-0040-SC
  22. De La Riva F. (2011). Poscosecha de flores de corte y medio ambiente. IDESIA, 29(3), 125-130 DOI: https://doi.org/10.4067/S0718-34292011000300019
  23. de Morais J.S., Sant’Ana A.S., Dantas A.M., Silva B.S., Lima M.S., Borges G.C. y Magnani M. (2020). Antioxidant activity and bioaccessibility of phenolic compounds in white, red, blue, purple, yellow and orange edible flowers through a simulated intestinal barrier. Food Res. Int., 131, 109046. DOI: https://doi.org/10.1016/j.foodres.2020.109046 DOI: https://doi.org/10.1016/j.foodres.2020.109046
  24. Delteil A., Gobbato E., Cayrol B., Estevan J., Michel-Romiti C., Dievart A., Kroj T. y Morel J.B. (2016). Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus. BMC Plant Biology, 16, 17. DOI: https://doi.org/10.1186/s12870-016-0711-x DOI: https://doi.org/10.1186/s12870-016-0711-x
  25. Demidchik V. (2015). Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ. Exp. Bot.,109, 212-228. DOI: https://doi.org/10.1016/j.envexpbot.2014.06.021
  26. Díez M.J. y Nuez F. (2008). Tomato. In: J. Prohens-Tomás y J. Nuez (eds), Vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umbelliferae. Handbook of Plant Breeding. Ed. Springer Publishing. NY, USA. DOI: https://doi.org/10.1007/978-0-387-74110-9_7
  27. Diningsih E., Yanda R.P. Soehendi R. y Marwoto B. (2019). Identification of the main virus infecting impatiens (Impatiens balsamina L.) IOP Conference Series: Earth and Environmental Series. Southeast Asia Plant Protection Conference. Bongor, Indonesia DOI: https://doi.org/10.1088/1755-1315/468/1/012035
  28. Djuric M., Subotic A., Prokic L., Trifunović-Momčilov M., Cingel A., Dragićević M., Simonovic A. y Milosevic S. (2021). Molecular characterization and expression of four aquaporin Genes in Impatiens walleriana during drought stress and recovery. Plants, 10(1), 154. DOI: https://doi.org/10.3390/plants10010154 DOI: https://doi.org/10.3390/plants10010154
  29. Djuric M., Subotic A., Prokic L., Trifunović-Momčilov M., Cingel A., Vujicic M. y Milosevic S. (2020). Morpho-physiological and molecular evaluation of drought and recovery in Impatiens walleriana grown ex vitro. Plants, 9(11), 1559. DOI: https://doi.org/10.3390/plants9111559 DOI: https://doi.org/10.3390/plants9111559
  30. Antonić, D.D., Subotic A.R., Dragićević M.B., Pantelic D., Milosevic S.M., Simonovic A.D.y Momčilović I. (2020). Effects of exogenous salicylic acid on drought response and characterization of dehydrins in Impatiens walleriana. Plants, 9(11), 1589. DOI: https://doi.org/10.3390/plants9111589 DOI: https://doi.org/10.3390/plants9111589
  31. Fischer E. y Rahelivololona M.E. (2002). New taxa of Impatiens (Balsaminaceae) from Madagascar I. Adansonia, 24, 271-294.
  32. Fischer E. y Rahelivololona M.E. (2016). New taxa of Impatiens (Balsaminaceae) from Madagascar VIII. Impatiens maxhuberi, a new species from Marojejy and Anjanaharibe-Sud. Phytotaxa, 244, 191-195. DOI: https://doi.org/10.11646/phytotaxa.244.2.7
  33. Fort A. (2013). Genome dosage and parent of origin effects in a ploidy series of Arabidopsis thaliana (PhD Diss.). National University Ireland, Galway. https://aran.library.nuigalway.ie/handle/10379/4432
  34. Fujihashi H., Akiyama S. y Ohba H. (2002). Origin and relationships of the Sino-Himalayan Impatiens (Balsaminaceae) based on molecular phylogenetic analysis, chromosome numbers and gross morphology. J. Jap. Bot. 77, 284-295.
  35. Fukumoto H., Yamaki M., Isoi K. y Ishiuro K. (1996). Antianaphylactic Effects of the Principal Compounds from the White Petals of Impatiens balsamina L. Phytother Res., 10: 202-206. DOI: https://doi.org/10.1002/(SICI)1099-1573(199605)10:3<202::AID-PTR805>3.0.CO;2-0
  36. Gechev T.S., Van-Breusegem F., Stone J.M., Denev I. y Laloi C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays, 28, 1091-1101. DOI: https://doi.org/10.1002/bies.20493 DOI: https://doi.org/10.1002/bies.20493
  37. Ghanbari M., Jowkar A., Salehi H. y Zarei M. (2019). Effects of polyploidization on petal characteristics and optical properties of Impatiens walleriana (Hook.). Plant Cell Tissue and Organ Culture, 138, 299-310. DOI: https://doi.org/10.1007/s11240-019-01625-3 DOI: https://doi.org/10.1007/s11240-019-01625-3
  38. Granados C. y Chaparro-Giraldo A. (2012). Métodos de transformación genética de plantas. Revista UDCA Actualidad y Divulgacion Cientifica. 15, 49-61. DOI: https://doi.org/10.31910/rudca.v15.n1.2012.802 DOI: https://doi.org/10.31910/rudca.v15.n1.2012.802
  39. Grey-Wilson C. (1980). Impatiens of Africa: Morphology, pollination and pollinators, ecology, phytogeography, hybridization, keys and a systematic treatment of all African species with a note on collecting and cultivation. Ed. University of Chicago Press.
  40. GRIIS (2018). Global Register of Introduced and Invasive Species. IUCN ISSG. http://griis.org/
  41. Gutiérrez-Beltrán E. y de la Torre F.N. (2015). La coevolución como un sistema de defensa en la interacción planta-patógeno. Encuentros en la biología, 9(157), 79-81.
  42. Haddad B., Gristina A.S., Mercati F., Saadi A.E., Aiter N., Martorana A., Sharaf A. y Carimi F. (2020). Molecular analysis of the official Algerian olive collection highlighted a hotspot of Diversity in the Central Mediterranean basin. Genes, 11(3), 303. DOI: https://doi.org/10.3390/genes11030303 DOI: https://doi.org/10.3390/genes11030303
  43. Herrera J.C. (2007). La citogenética molecular y su aplicación en el estudio de los genomas vegetales. Agronomía Colombiana, 25(1), 26-35.
  44. Howard N.P., Stimart D., de Leon N., Havey M.J. y Martin W. (2012). Diallel analysis of floral longevity in Impatiens walleriana. J Am Soc Hortic., 137, 47-50. DOI: https://doi.org/10.21273/JASHS.137.1.47
  45. Janssens S.B., Geuten K., Viaene T., Yuan Y.M., Song Y. y Smets E. (2007). Phylogenetic utility of the AP3/DEF K-domain and its molecular evolution in Impatiens (Balsaminaceae). Mol. Phylogenet. Evol., 43(1), 225-239. DOI: https://doi.org/10.1016/j.ympev.2006.11.016
  46. Janssens S.B., Geuten K., Yuan Y.M., Song Y., Kupfer P. y Smets E. (2006). Phylogenetics of Impatiens and Hydrocera (Balsaminaceae) using chloroplastat pB-rbcL spacer sequences. Syst. Bot., 31, 171-180. DOI: https://doi.org/10.1600/036364406775971796
  47. Janssens S.B., Knox E.B., Huysmans S., Smets E.F. y Merckx V.F.S.T. (2009). Rapid radiation of Impatiens (Balsaminaceae) during Pliocene and Pleistocene: result of a global climate change. Mol. Phylogenet. Evol., 52, 806-824. DOI: https://doi.org/10.1016/j.ympev.2009.04.013
  48. Janssens S.B., Wilson S.Y., Yuan Y.M., Nagels A., Smets E.F. y Huysmans S. (2012). A total evidence approach using palynological characters to infer the complex evolutionary history of the Asian Impatiens (Balsaminaceae). Taxon, 61, 355-367 DOI: https://doi.org/10.1002/tax.612007
  49. Jones D. y O´Neill T. (2004). Impatiens downy mildew. East Malling, UK: Horticultural Development Council: Factsheet 05/04 Impatiens Protected Crops.
  50. Jones K. y Smith J.B. (1966). The cytogeography of Impatiens L. (Balsaminaceae). Kew Bull., 20(1): 63-72. DOI: https://doi.org/10.2307/4107885
  51. Lane C.R., Beales P.A., O'Neill T.M., McPherson G.M., Finlay A.R., David, J., Constantinescu O. y Henricot B. (2005). First report of Impatiens downy mildew (Plasmopara obducens) in the UK. Plant Pathology, 54(2), 243. DOI: https://doi.org/10.1111/j.1365-3059.2005.01133.x DOI: https://doi.org/10.1111/j.1365-3059.2005.01133.x
  52. Lehrer J., Brand M. y Lubell J. (2008). Induction of tetraploidy in meristematically active seeds of Japanese barberry (Berberis thunbergii var. atropurpurea) through exposure to colchicine and oryzalin. Scientia Hort., 119, 67-71. DOI: https://doi.org/10.1016/j.scienta.2008.07.003
  53. Lodish H., Berk A., Matsudaira P., Kaiser C., Krieger M., Scott M.P., Zipursky L. y Darnell J.(2016). Cap 12. Cellular energetics. In: Molecular Cell Biology. Ed. W.H Freeman and Company. NY, USA.
  54. Mabberley D.J. (2017). Mabberley’s Plant-Book, A portable dictionary of plants, their classification and uses, 4th ed. Cambridge University Press, UK. DOI: https://doi.org/10.1017/9781316335581
  55. Macnish A.J., Irving D.E., Joyce D.C., Vithanage V., Wearing A.H. y Lisle A.T (2004). Variation in ethylene-induced postharvest flower abscission responses among Chamelaucium Desf. (Myrtaceae) genotypes. Sci Hortic., 102, 415-432. DOI: https://doi.org/10.1016/j.scienta.2004.05.002 DOI: https://doi.org/10.1016/j.scienta.2004.05.002
  56. Mercati F. y Sunseri F. (2020). Genetic Diversity Assessment and marker-assisted selection in crops. Genes, 11, 1481. DOI: https://doi.org/10.3390/genes11121481 DOI: https://doi.org/10.3390/genes11121481
  57. Merling C. y Grant M.F. (1986). Hybridization studies in the genus Impatiens. Canadian Journal of Botany, 64, 5. DOI: https://doi.org/10.1139/b86-145 DOI: https://doi.org/10.1139/b86-145
  58. Messina C.D., Podlich D. y Dong Z. (2011). Yield-trait performance landscapes: from theory to aplication in breeding maize for drought tolerance. J. Exp. Bot., 62(3), 855-868. DOI: https://doi.org/10.1093/jxb/erq329 DOI: https://doi.org/10.1093/jxb/erq329
  59. Milošević S., Lojić M., Antonić D., Cingel A. y Subotić A. (2015). Changes of antioxidative enzymes in Impatiens walleriana L. shoots in response to genetic transformation. Genetika, 47(1), 71-84. DOI: https://doi.org/10.2298/GENSR1501071M
  60. Mondragón J. (2009). Impatiens walleriana Hook f. (Balsaminaceae): ficha informativa. http://www.conabio.gob.mx/malezasdemexico/balsaminaceae/impatiens-walleriana/fichas/ficha.htm#:~:text=Flores%3A%20De%20varios%20colores%3A%20rojas,de%20largo%3B%20p%C3%A9talos%20relativamente%20similares
  61. Motz V.A., Bowers C.P., Kneubehl A.R., Lendrum E.C., Young L.M. y Kinder D.H. (2015). Efficacy of the saponin component of Impatiens capensis Meerb. in preventing urushiol-induced contact dermatitis. J Ethnopharmacol, 162, 163-167. DOI: https://doi.org/10.1016/j.jep.2014.12.024
  62. Navarro C. y Muñoz-Garmendia F. (2013) Flora Ibérica, vol. IX: Impatiens L. http://www.floraiberica.es/floraiberica/texto/imprenta/tomoIX/09_126_00_01_Balsaminaceae_2010_09 20.pdf
  63. Naveed Z.A. y Ali G.S. (2018). Comparative transcriptome analysis between a resistant and a susceptible wild tomato accession in response to Phytophthora parasitica. Int. J. Mol. Sci., 19(2), 3735. DOI: https://doi.org/10.3390/ijms19123735 DOI: https://doi.org/10.3390/ijms19123735
  64. Ojito-Ramos K. y Portal O. (2010). Introducción al sistema inmune en plantas. Biotecnología Vegetal, 10(1), 3-19.
  65. Olsen A., Lutken H., Nymark J., Muller R. (2015). Ethylene resistance in flowering ornamental plants – improvements and future perspectives. Horticulture Research, 2, 15038. DOI: https://doi.org/10.1038/hortres.2015.38 DOI: https://doi.org/10.1038/hortres.2015.38
  66. Onozaki T., Yagi M., Tanase K. y Shibata M. (2011). Crossings and selections for six generations based on flower vase life to create lines with ethylene resistance or ultra-long vase life in carnations (Dianthus caryophyllus L.). J. Jpn. Soc. Hortic. Sci., 80, 486-498. DOI: https://doi.org/10.2503/jjshs1.80.486
  67. Oswald B. y Nuismer S. (2007). Neopolyploidy and pathogen resistance. Proc. Biol. Sci., 274, 2393-2397. DOI: https://doi.org/10.1098/rspb.2007.0692
  68. Palumbo F., Galvao A.C., Nicoletto C., Sambo P. y Barcaccia G. (2019). Diversity analysis of sweet potato genetic resources using morphological and quantitative traits and molecular markers. Genes, 10(11), 840. DOI: https://doi.org/10.3390/genes10110840 DOI: https://doi.org/10.3390/genes10110840
  69. Parker A. (2005). Pollinator limitation and seed set of Impatiens walleriana. Tropical Ecology Collection, Monteverde Institute. Digital Colections. https://digital.lib.usf.edu/SFS0001528/00001
  70. PIER (2018). Pacific Islands Ecosystems at Risk. In: Pacific Islands Ecosystems at Risk. Honolulu, Hawaii, USA: HEAR, University of Hawaii. http://www.hear.org/pier/index.html
  71. Pires E.d.O., Pereira E., Pereira C., Dias M.I., Calhelha R.C., Ćirić A., Soković M., Hassemer G., Garcia C.C., Caleja C., Barros L. y Ferreira I.C.F.R. (2021). Chemical Composition and Bioactive Characterization of Impatiens walleriana. Molecules, 26, 1347. DOI: https://doi.org/10.3390/molecules26051347 DOI: https://doi.org/10.3390/molecules26051347
  72. Pyšek P. y Prach K. (1993). Plant invasions and the role of riparian habitats: a comparison of four species alien to central Europe. Journal of Biogeography, 20: 413-420. DOI: https://doi.org/10.2307/2845589
  73. Queensland Government (2018). Weeds of Australia, Biosecurity Queensland Edition. In: Weeds of Australia, Biosecurity Queensland Edition. Australia: Queensland Government. http://keyserver.lucidcentral.org/weeds/data/media/Html/search.html
  74. Ranty B., Aldon D., Cotelle V., Galaud J.P., Thuleau P., Mazars C. (2016). Calcium Sensors as Key Hubs in Plant Responses to Biotic and Abiotic Stresses. Frontiers in Plant Science. DOI: https://doi.org/10.3389/fpls.2016.00327 DOI: https://doi.org/10.3389/fpls.2016.00327
  75. Rao A., Bakhsh A., Kiani S., Shahzad K., Shahid A., Husnain T. y Riazuddin S. (2009). The myth of plant transformation. Biotechn. Adv., 27, 753-763. DOI: https://doi.org/10.1016/j.biotechadv.2009.04.028
  76. Renganayaki K., Read J.C. y Fritz A.K. (2001). Genetic diversity among Texas bluegrass genotypes (Poa arachnifera Torr.) revealed by AFLP and RAPD markers. Theor. Appl. Genet. 102, 1037-1045. DOI: https://doi.org/10.1007/s001220000521
  77. Rommens C. (2004). All-native DNA transformation: a new approach to plant genetic engineering. Trends Plant Sci., 9(9), 457-464. DOI: https://doi.org/10.1016/j.tplants.2004.07.001
  78. Sanjari A. y Yazdansepas A. (2008). Evaluation of Wheat (Triticum aestivum L.) Genotypes under Pre- and Post-anthesis Drought Stress Conditions. J. Agric. Sci. Technol., 10, 109-121.
  79. Shajita P., Dhanesh N., Ebin P., Joseph L., Devassy A., John R. y Mathew L. (2015). Molecular phylogeny of Balsams (Genus Impatiens) based on ITS regions of nuclear ribosomal DNA implies two colonization events in south India. Journal of Applied Biology & Biotechnology, 4(6), 1-9. DOI: https://doi.org/10.7324/JABB.2016.40601 DOI: https://doi.org/10.7324/JABB.2016.40601
  80. Yua S.X., Steven J.B., Zhua X.Y, Magnus L., Gao T.G. y Wei W. (2015). Phylogeny of Impatiens (Balsaminaceae): Integrating molecular and morphological evidence into a new classification. Cladistics, 32(2), 179-197. DOI: https://doi.org/10.1111/cla.12119 DOI: https://doi.org/10.1111/cla.12119
  81. Shibuya K., Berry K.G., Ciardi J.A., Loucas H.M., Underwood B.A., Nourizadeh J.R., Ecker H.J. y Klee D.G. (2004). The central role of PhEIN2 in ethylene responses throughout plant development in petunia. Plant Physiol, 136, 2900-2912. DOI: https://doi.org/10.1104/pp.104.046979
  82. Song Y., Yong-Ming Y. y Philippe K. (2003). Chromosomal evolution in Balsaminaceae, with cytological observations on 45 species from Southeast Asia. Caryologia, 56, 463-481. DOI: https://doi.org/10.1080/00087114.2003.10589359
  83. Sreekala A.K., Pandurangan A.G., Ramasubbu R., Kulloli S.K. (2008). Reproductive biology of Impatiens coelotropis Fischer, a critically endangered balsam from the Southern Western Ghats. Current Science. 95(3), 386-388.
  84. Tanaka Y., Katsumoto Y., Brugliera F. y Mason J. (2005). Genetic engineering in floriculture. Plant Cell, Tissue and Organ Culture, 80, 1-24. DOI: https://doi.org/10.1007/s11240-004-0739-8
  85. Tanase K., Otsu S., Satoh S., Onozaki T. (2013). Expression and regulation of senescence related genes in carnation flowers with low ethylene production during senescence. J. Jpn. Soc. Hortic. Sci., 82, 179-187. DOI: https://doi.org/10.2503/jjshs1.82.179
  86. Tang D., Wang G. y Zhou J. (2017). Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell, 29, 618-637. DOI: https://doi.org/10.1105/tpc.16.00891 DOI: https://doi.org/10.1105/tpc.16.00891
  87. Tatsuzawa F., Suzuki Y., Sato M., Kato K. (2016). Flower Colors and Pigments in the Cultivars of Impatiens walleriana. Horticultural Research (Japan), 15, 115-122. DOI: https://doi.org/10.2503/hrj.15.115 DOI: https://doi.org/10.2503/hrj.15.115
  88. Taylor N.y Fauquet C. (2002). Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA and Cell Biology. (USA), 21(12), 963-977. DOI: https://doi.org/10.1089/104454902762053891
  89. Uchneat M.S. (2007). Impatiens. En: Anderson N.O. (eds) Flower Breeding and Genetics. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-1-4020-4428-1_10 DOI: https://doi.org/10.1007/978-1-4020-4428-1_10
  90. USDA-NRCS (2018). The PLANTS Database. En: The PLANTS Database Greensboro, North Carolina, USA: National Plant Data Team. https://plants.sc.egov.usda.gov
  91. Van-Alvorst A.C. y Bovy A.G. (1995). The role of ethylene in the senescence of carnation flowers, a review. Plant Growth Regulation, 16: 43-53. DOI: https://doi.org/10.1007/BF00040506
  92. van Vankelburg J.L.C.H., Schoenenber N., van de Vossenberg B.T.L.H., Man in´t Veld W.A., Westenberg M. y Boer E. (2019). A natural hybrid of Impatiens, in the introduced range, demonstrated by sequence analysis of the nuclear ribosomal DNA-gene repeat. Biodiversity & Conservation Biology, 166(2), 144-152. DOI: https://doi.org/10.1080/23818107.2019.1584863 DOI: https://doi.org/10.1080/23818107.2019.1584863
  93. Wang W., He Y., Cao Z. y Deng Z. (2018). Induction of Tetraploids in Impatiens (Impatiens walleriana) and Characterization of Their Changes in Morphology and Resistance to Downy Mildew. HortScience, 53(7), 925-931. DOI: https://doi.org/10.21273/HORTSCI13093-18 DOI: https://doi.org/10.21273/HORTSCI13093-18
  94. Wang Y. y LI J. (2006). Genes controlling plant architecture. Current opinion on Biotech, 17, 123-129. DOI: https://doi.org/10.1016/j.copbio.2006.02.004
  95. Wegulo S.N., Koike S.T., Vilchez M. y Santos P., (2004). First report of downy mildew caused by Plasmopara obducens on Impatiens in California. Plant Disease, 88(8), 909. DOI: https://doi.org/10.1094/PDIS.2004.88.8.909B DOI: https://doi.org/10.1094/PDIS.2004.88.8.909B
  96. Yšek P. (1995). Invasion dynamics of Impatiens glandulifera. A century of spreading reconstructed. Biological Conservation, 74, 41-48. DOI: https://doi.org/10.1016/0006-3207(95)00013-T
  97. Yuan Y.M., Song Y., Geuten K., Rahelivololona E., Wohlhauser S., Fischer E., Smets E. y Kaupfer P. (2004). Phylogeny andbiogeography of Balsaminaceae inferred from ITS sequence data. Taxon, 53, 391-403. DOI: https://doi.org/10.2307/4135617
  98. Yue B., Xue W., Luo L. y Xing J.Y. (2008). Identification of quantitative trait loci for four morphologic traits under water stress in rice (Oryza sativa L.) Genet. Genomics, 35(9), 569-575. DOI: https://doi.org/10.1016/S1673-8527(08)60077-6 DOI: https://doi.org/10.1016/S1673-8527(08)60077-6
  99. Zhu Y., Shao J., Zhou Z. y Davis R.E. (2017). Comparative transcriptome analysis reveals a preformed defense system in apple root of a resistant genotype of G.935 in the absence of pathogen. Int. J. Plant Genomics. DOI: https://doi.org/10.1155/2017/8950746 DOI: https://doi.org/10.1155/2017/8950746
  100. Zhuo F., Xiong F., Deng X., Li Z. y Ren M. (2020). Target of Rapamycin (TOR) Negatively Regulates Ethylene Signals in Arabidopsis. Intern. Journ. Mol. Sciences. DOI: https://doi.org/10.3390/ijms21082680 DOI: https://doi.org/10.3390/ijms21082680
  101. Zúñiga A. y Carrodeguas A. (2020). Factores importantes para el mejoramiento genético en la piña (Anannas comosus var. comosus). Repertorio Científico, 23(2), 50-37. DOI: https://doi.org/10.22458/rc.v23i2.2998

Descargas

Los datos de descargas todavía no están disponibles.