Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Elaboración de un producto tipo ‘pasta alimenticia’ a partir de residuos de plátano hartón prefreído

Resumen

El propósito de este estudio fue aprovechar los recortes de plátano hartón prefreído, o subproducto de patacón (SPP), que las empresas producen en la elaboración de patacones y que representan, aproximadamente, un 30 % de pérdidas mensuales. Dada la alta perecibilidad de estos residuos, se formuló un producto de buena aceptabilidad, con una vida útil más larga y que facilitara el manejo del subproducto. Se utilizaron tres harinas de trigo de diferente marca comercial, sémola de trigo y SPP en diferentes proporciones para establecer la mínima inclusión de harina en la formulación del producto tipo “pasta”. Las pruebas de absorción y pérdida de agua determinaron que la mejor mezcla fue la que contenía 65 % de residuos de plátano hartón prefreído y 35 % de sémola de trigo. Las pruebas sensoriales con consumidores ayudaron a la selección de esta formulación. Los análisis de textura realizados mostraron mayor fracturabilidad y menor firmeza del producto tipo “pasta” con relación a una pasta patrón, pero durante la cocción se mantuvo estable y presentó buena consistencia.

Palabras clave

agroindustria, nuevos productos, plátano, plátano hartón, semolina

PDF

Citas

  1. Passo Tsamo CV, Herent MF, Tomekpe K, Happi Emaga T, Quetin-Leclercq JH, Rogez J, Larondelle Y, Andre C. Phenolic profiling in the pulp and peel of nine plantain cultivars (Musa sp.). Food Chem. 2015; 167: 197-204. DOI: http://doi.org/10.1016/j.foodchem.2014.06.095. DOI: https://doi.org/10.1016/j.foodchem.2014.06.095
  2. Turner DW, Fortescue JA, Ocimati W, Blomme G. Plantain cultivars (Musa spp. AAB) grown at different altitudes demonstrate cool temperature and photoperiod responses relevant to genetic improvement. F Crop Res. 2016; 194: 103-111. DOI: http://doi.org/10.1016/j.fcr.2016.02.006. DOI: https://doi.org/10.1016/j.fcr.2016.02.006
  3. Olmos Soler AM. Cadena Productiva del Plátano. Ministerio de Agricultura y Desarrollo Rural. 2015.
  4. FAO. Panorama General de la Producción y el Comercio Mundial de Banano. Depósitos de documentos de la FAO. 2010. Disponible en: http://www.fao.org/docrep/007/y5102s/y5102s04.htm.
  5. Martínez H. La Cadena del Plátano en Colombia. Bogotá (Colombia). 2005.
  6. Pérez M, Ruiz D, Schneider M, Autino J, Romanelli G. La química verde como fuente de nuevos compuestos para el control de plagas agrícolas. Cienc en Desarro. 2013; 4(2): 83-91.
  7. Quaglia G.Ciencia y Tecnología de la Panificación. Zaragoza (España). 1991.
  8. ICBF. Tabla de composición de los Alimentos Colombianos. 2016. Disponible en: http://www.icbf.gov.co/portal/page/portal/PortalICBF/bienestar/nutricion/tabla-alimentos.
  9. Wang L, Duan W, Zhou S, Quian H, Zhang H, Qi X. Effects of extrusion conditions on the extrusion responses and the quality of brown rice pasta. Food Chem. 2016; 204: 320-325. DOI: http://doi.org/10.1016/j.foodchem.2016.02.053. DOI: https://doi.org/10.1016/j.foodchem.2016.02.053
  10. Ficco DBM, De Simone V, Colecchia S, Pecorella I, Platani C, Nigro F, Finocchiaro F, Papa R, De Vita P. Genetic Variability in Anthocyanin Composition and Nutritional Properties of Blue, Purple, and Red Bread (Triticum aestivum L.) and Durum (Triticum turgidum L. ssp. turgidum convar. durum) Wheats. J Agric Food Chem. 2014; 62 (34): 8686-8695. DOI: http://doi.org/10.1021/jf5003683. DOI: https://doi.org/10.1021/jf5003683
  11. Ficco DBM, De Simone V, De Leonardis AM, Giovanniello V, Del Nobile MA, Padalino L, Lecce L, Borrelli GM, De Vita P. Use of purple durum wheat to produce naturally functional fresh and dry pasta. Food Chem. 2016; 205: 187-195. DOI: http://doi.org/10.1016/j.foodchem.2016.03.014. DOI: https://doi.org/10.1016/j.foodchem.2016.03.014
  12. Cabrera-Chávez F, Calderón de la Barca AM, Islas-Rubio A R, Marti A, Marengo M, Pagani MA, Bonomi F, Iametti S. Molecular rearrangements in extrusion processes for the production of amaranth-enriched, gluten-free rice pasta. LWT - Food Sci Technol. 2012; 47(2): 421-426. DOI: http://doi.org/10.1016/j.lwt.2012.01.040. DOI: https://doi.org/10.1016/j.lwt.2012.01.040
  13. Marengo M, Bonomi F, Marti A, Pagani MA, Elkhalifa AEO, Iametti S. Molecular features of fermented and sprouted sorghum flours relate to their suitability as components of enriched gluten-free pasta. LWT - Food Sci Technol. 2015; 63(1): 511-518. DOI: http://doi.org/10.1016/j.lwt.2015.03.070. DOI: https://doi.org/10.1016/j.lwt.2015.03.070
  14. Bouasla A, Wójtowicz A, Zidoune MN. Gluten-free precooked rice pasta enriched with legumes flours: Physical properties, texture, sensory attributes and microstructure. LWT - Food Sci Technol. 2016; 75: 569-577. DOI: http://doi.org/10.1016/j.lwt.2016.10.005. DOI: https://doi.org/10.1016/j.lwt.2016.10.005
  15. Jalgaonkar K, Jha SK. Influence of particle size and blend composition on quality of wheat semolina-pearl millet pasta. J Cereal Sci. 2016; 71: 239-245. DOI: http://doi.org/10.1016/j.jcs.2016.09.007. DOI: https://doi.org/10.1016/j.jcs.2016.09.007
  16. Diantom A, Carini E, Curti E, Cassotta F, D’Alessandro A, Vittadini E. Effect of water and gluten on physico-chemical properties and stability of ready to eat shelf-stable pasta. Food Chem. 2016; 195: 91-96. DOI: http://doi.org/10.1016/j.foodchem.2015.04.026. DOI: https://doi.org/10.1016/j.foodchem.2015.04.026
  17. Aston LM, Gambell JM, Lee DM, Bryant SP, Jebb SA. Determination of the glycaemic index of various staple carbohydrate-rich foods in the UK diet. Eur J Clin Nutr. 2008; 62: 279-285. DOI: http://doi.org/10.1038/sj.ejcn.1602723. DOI: https://doi.org/10.1038/sj.ejcn.1602723
  18. AOAC, Official Methods of Analysis, 16th ed. AOAC INTERNATIONAL. 1998.
  19. Ministerio de Salud. Resolución No. 4393 de 1991. Fabricación, empaque y comercialización de Pastas Alimenticias. 1991.
  20. Bassama J, Achir N, Trystram G, Collignan A, Bohuon P. Deep-fat frying process induces nutritional composition diversity of fried products assessed by SAIN/LIM scores. J Food Eng. 2015; 149: 204-213. DOI: http://doi.org/10.1016/j.jfoodeng.2014.10.017. DOI: https://doi.org/10.1016/j.jfoodeng.2014.10.017
  21. Bastida S, Sánchez-Muniz FJ. Frying. A Cultural Way of Cooking in the Mediterranean Diet. The Mediterranean Diet: An Evidence-Based Approach. 2014; 217-234. DOI: https://doi.org/10.1016/B978-0-12-407849-9.00021-X
  22. Iametti S, Bonomi F, Pagani MA, Zardi M, Cecchini C, D´Egidio MG. Properties of the proteins and carbohydrate fractions in immature wheat kernels. J Agric Food Chem. 2006; 54: 10239-10244. DOI: http://doi.org/10.1021/jf062269t. DOI: https://doi.org/10.1021/jf062269t
  23. Larrosa V, Lorenzo G, Zaritzky N, Califano A. Improvement of the texture and quality of cooked gluten-free pasta. LWT - Food Sci Technol. 2016; 70: 96-103. DOI: http://doi.org/10.1016/j.lwt.2016.02.039. DOI: https://doi.org/10.1016/j.lwt.2016.02.039
  24. Giuberti G, Gallo A, Cerioli C, Fortunati P, Masoero F. Cooking quality and starch digestibility of gluten free pasta using new bean flour. Food Chem. 2015; 175: 43-49. DOI: http://doi.org/10.1016/j.foodchem.2014.11.127. DOI: https://doi.org/10.1016/j.foodchem.2014.11.127
  25. Giménez MA, González RJ, Wagner J, Torres R, Lobo MO, Samman NC. Effect of extrusion conditions on physicochemical and sensorial properties of corn-broad beans (Vicia faba) spaghetti type pasta. Food Chem. 2013; 136(2): 538-545. DOI: http://doi.org/10.1016/j.foodchem.2012.08.068. DOI: https://doi.org/10.1016/j.foodchem.2012.08.068

Descargas

Los datos de descargas todavía no están disponibles.