Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Factibilidad técnica de variedades de algodón expresando proteínas Cry tóxicas contra Anthonomus grandis en el Valle del Sinú, Colombia

Resumen

Anthonomus grandis y Spodoptera frugiperda son las principales plagas del algodón en la región Caribe de Colombia, la principal productora de algodón del país. El control de A. grandis representa el 20 % de los costos de producción. Las proteínas Cry disponibles en los algodones transgénicos no son útiles para el control de estas plagas; sin embargo, nuevas proteínas Cry han demostrado, en pruebas in-vitro e in-planta, tener efecto tóxico sobre A. grandis y S. frugiperda. Los genes que codifican estas proteínas pueden ser insertados en plantas de algodón, produciendo una nueva generación de plantas transgénicas de gran valor para aquellas regiones severamente afectadas por el picudo del algodón. El propósito de este estudio fue evaluar la factibilidad técnica de la incorporación y desarrollo de cultivares transgénicos de algodón para el control de A. grandis y S. frugiperda. Cuatro escenarios tecnológicos de desarrollo de los cultivares transgénicos con proteínas Cry han sido propuestos; estos escenarios fueron desarrollados a partir de evidencia experimental publicada, y el impacto en la estructura de costos fue estimado con base en la información recogida durante un panel con agricultores. En consideración al nivel de control obtenido y al desarrollo tecnológico actual, se considera viable el desarrollo de materiales transgénicos expresando la proteína Cry1Ia12. Dadas las condiciones ambientales del Valle del Sinú, la inclusión de esta proteína reduciría los costos de manejo de plagas en más del 40 %.

Palabras clave

Anthonomus grandis, costos de producción, economía agrobiotecnológica, plagas del algodón, proteínas Cry, Spodoptera frugiperda

PDF

Citas

(1) Lange D., Moriya K. Experiencias en Paraguay. El algodón en la agricultura de conservación de los pequeños agricultores. Asunción, Paraguay: FAO - GTZ; 2004.

(2) Ñañez LC. Manejo fitosanitario del cultivo del algodón (Gossypium Hirsutum). Bogotá: ICA - MADR; 2012.

(3) Perfetti JJ., Balcázar Á., Hernández A., Leibovich J. Políticas para el desarrollo de la agricultura en Colombia. Bogotá, Colombia: Fedesarrollo; 2013.

(4) Rendon F., Cardona C., Revelo R. Entomología del algodonero. Bases técnicas para el cultivo del algodón en Colombia. Federación Nacional de Cafeteros; 1978: 259-376, 1978.

(5) Chegwin J. Valoración económica de la implementación de tecnología transgénica en el cultivo de algodón versus la tecnología convencional para el departamento de Córdoba. Tesis de grado. Universidad de la Salle, Bogotá, Colombia, 2016.

(6) Negrete Barón FM., Morales Angulo JG., Martínez Ramos LF. Buenas prácticas agrícolas para el cultivo de algodón en el departamento de Córdoba. Boletín técnico. Monteria, Córdoba, 2009.

(7) Departamento Nacional de Planeación. Agenda interna para la productividad y la competitividad. 2007.

(8) Espinal CF., Martínez Covaleda H., Pinzón Ruíz N., Barrios Urrutia C. La cadena de algodón en Colombia: una mirada global de su estructura y dinámica 1991-2005. Banco de la República. Bogotá, 2008. Disponible en: http://bibliotecadigital.agronet.gov.co/handle/11348/6113.

(9) De La Hoz JV. La economía del departamento de Córdoba: ganadería y minería como sectores clave. Banco de la República. Centro de Estudios Económicos Regionales, Bogotá, 2004.

(10) Bravo A., Soberón M. How to cope with insect resistance to Bt toxins?. Trends Biotechnol; 2008; 26 (10): 573-579. DOI: https://doi.org/10.1016/j.tibtech.2008.06.005.

(11) De Oliveira RS., Oliveira-Neto OB., Moura HFN., de Macedo LLP., Arraes FBM., Lucena WA., et al. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis). Front Plant Sci; 2016; 19 (7); 165. DOI: https://doi.org/10.3389/fpls.2016.00165.

(12) James C. ISAAA Briefs No. 49: Global Status of Commercialized Biotech/GM Crops. International Service for the Acquisition of Agri-biotech Applications, Ithaca, NY; 2014.

(13) Ribeiro TP., Arraes FBM., Lourenço-Tessutti IT., Silva MS., Lisei-de-Sá ME., Lucena WA., et al. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil. Plant Biotechnol J; 2017; 15 (8): 997-1009. DOI: https://doi.org/10.1111/pbi.12694.

(14) Olsen KM., Daly JC., Holt HE., Finnegan EJ. Season-long variation in expression of Cry1Ac gene and efficacy of Bacillus thuringiensis toxin in transgenic cotton against Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology; 2005; 98(3): 1007-1017. DOI: https://doi.org/10.1603/0022-0493-98.3.1007.

(15) Sivasupramaniam S., Moar WJ., Ruschke LG., Osborn JA., Jiang C, Sebaugh JL., et al. Toxicity and characterization of cotton expressing Bacillus thuringiensis Cry1Ac and Cry2Ab2 proteins for control of lepidopteran pests. Journal of Economic Entomology; 2008; 101(2): 546-554. DOI: https://doi.org/10.1093/jee/101.2.546.

(16) Adamczyk JJ., Gore J. Laboratory and field performance of cotton containing Cry1ac, Cry1f, and both Cry1ac and Cry1f (widestrike®) against beet armyworm and fall armyworm larvae (Lepidoptera: Noctuidae). Florida Entomologist: 2004; 87(4): 427-432. DOI: https://doi.org/10.1653/0015-4040(2004)087[0427:LAFPOC]2.0.CO;2.

(17) Ali MI., Luttrell RG. Susceptibility of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) to Vip3A insecticidal protein expressed in VipCotTM cotton. Journal of Invertebrate Pathology; 2011; 108 (2): 76-84. DOI: https://doi.org/10.1016/j.jip.2011.06.013.

(18) Bommireddy PL., Leonard BR. Survivorship of Helicoverpa zea and Heliothis virescens on Cotton Plant Structures Expressing a Bacillus thuringiensis. Vegetative Insecticidal Protein; 2008; 101 (4):1244-1252

(19) De Souza Aguiar RW., Martins ES., Ribeiro BM., Monnerat RG. Cry10Aa protein is highly toxic to Anthonomus grandis Boheman (Coleoptera: Curculionidae), an important insect pest in Brazilian cotton crop fields. Bt Research; 2012; 3 (1).

(20) Oliveira GR., Silva MC., Lucena WA., Nakasu EY., Firmino AA., Beneventi MA., et al. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis). BMC biotechnology; 2011; 11 (1): 1. DOI: https://doi.org/10.1186/1472-6750-11-85.

(21) Grossi-de-Sa MF., Quezado de Magalhaes M., Silva MS., Silva SMB., Dias SC., Nakasu EYT., et al. Susceptibility of Anthonomus grandis (cotton boll weevil) and Spodoptera frugiperda (fall armyworm) to a cry1ia-type toxin from a Brazilian Bacillus thuringiensis strain. J Biochem Mol Biol; 2007; 40(5): 773-782. DOI: https://doi.org/10.5483/BMBRep.2007.40.5.773.

(22) Martins ES., Aguiar RWDS., Martins NF., Melatti VM., Falcão R., Gomes ACMM., et al. Recombinant Cry1Ia protein is highly toxic to cotton boll weevil (Anthonomus grandis Boheman) and fall armyworm (Spodoptera frugiperda). J Appl Microbiol; 2008; 104 (5): 1363-1371. DOI: https://doi.org/10.1111/j.1365-2672.2007.03665.x.

(23) Martins ES., Monnerat RG., Queiroz PR., Dumas VF., Braz SV., de Souza Aguiar RW., et al. Midgut GPI-anchored proteins with alkaline phosphatase activity from the cotton boll weevil (Anthonomus grandis) are putative receptors for the Cry1B protein of Bacillus thuringiensis. Insect Biochem Mol Biol; 2010; 40 (2): 138-145. DOI: https://doi.org/10.1016/j.ibmb.2010.01.005.

(24) Silva CR., Monnerat R., Lima LM., Martins ÉS., Melo Filho PA., Pinheiro MP., et al. Stable integration and expression of a cry1Ia gene conferring resistance to fall armyworm and boll weevil in cotton plants. Pest Manag Sci; 2016; 72 (8): 1549-1557. DOI: https://doi.org/10.1002/ps.4184.

(25) Deist BR., Rausch MA., Fernandez-Luna MT., Adang MJ., Bonning BC. Bt toxin modification for enhanced efficacy. Toxins (Basel); 2014; 6 (10): 3005-3027. DOI: https://doi.org/10.3390/toxins6103005.

(26) Mandal CC., Gayen S., Basu A., Ghosh KS., Dasgupta S., Maiti MK., et al. Prediction-based protein engineering of domain I of Cry2A entomocidal toxin of Bacillus thuringiensis for the enhancement of toxicity against lepidopteran insects. Protein Eng Des Sel; 2007; 20 (12): 599-606. DOI: https://doi.org/10.1093/protein/gzm058.

(27) Gayen S., Mandal CC., Samanta MK., Dey A., Sen SK. Expression of an engineered synthetic cry2Aa (D42/K63F/K64P) gene of Bacillus thuringiensis in marker free transgenic tobacco facilitated full-protection from cotton leaf worm (S. littoralis) at very low concentration. World J Microbiol Biotechnol; 2016; 32 (4): 62. DOI: https://doi.org/10.1007/s11274-016-2013-8.

(28) Oliveira MAC., Duarte JB., Morello CL., Suassuna ND., Oliveira AB. Mixed inheritance in the genetic control of ramulosis (Colletotrichum gossypii var. cephalosporioides) resistance in cotton. Genet Mol Res; 2016; 15(3). DOI: https://doi.org/10.4238/gmr.15038667.

(29) Gatehouse JA. Biotechnological prospects for engineering insect-resistant plants. Plant Physiol; 2008; 146 (3): 881-887. DOI: https://doi.org/10.1104/pp.107.111096.

(30) Tabashnik BE., Dennehy TJ., Sims MA., Larkin K., Head GP., Moar WJ., et al. Control of resistant pink bollworm (Pectinophora gossypiella) by transgenic cotton that produces Bacillus thuringiensis toxin Cry2Ab. Appl Environ Microbiol; 2002; 68 (8): 3790-3794. DOI: https://doi.org/10.1128/AEM.68.8.3790-3794.2002.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede {advancedSearchLink} para este artículo.