Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Análisis De Las Aplicaciones De La Microalga Botryococcus Braunii En Procesos Industriales

Resumen

Las microalgas y cianobacterias son la nueva plataforma biotecnológica par la producción de diversos metabolitos de interés industrial como carbohidratos, proteínas, lípidos, carotenoides e incluso metabolitos menos comunes como lo son los hidrocarburos y los exopolisacaridos. Una de las especies con la capacidad de producir un amplio espectro de metabolitos es Botryococcus braunii. Esta alga verde colonial posee la peculiaridad de sintetizar hidrocarburos, Exopolisacáridos y otros metabolitos. La presente contribución presenta un panorama bibliométrico de la investigación mundial sobre la producción de B. braunii y sus principales metabolitos de interés para procesos industriales. Los datos de publicaciones científicas durante los últimos 21 años (2000-2021) se obtuvieron de la base de datos SCOPUS© y se filtraron mediante una estrategia de búsqueda sistemática. A partir del análisis se  obtuvo un total de 675 documentos científicos enfocados en el aislamiento, producción y mejoramiento de cepas pertenecientes a la especie Botryococcus braunii. De acuerdo con la información obtenida la mayor cantidad de trabajos publicados se han enfocado en la producción y mejoramiento de hidrocarburos tanto para la obtención de biocombustibles. Los principales países que mas han aportado a la investigación de esta especie son Estados Unidos, Japón, China e India; Sin embargo países con alta concentración de biodiversidad como Colombia presentan pocos trabajos con cepas aisladas dentro del territorio nacional. Este análisis bibliométrico permite evidenciar el alto grado de desarrollo obtenido en los últimos 20 años para generar plataformas biotecnológicas para la obtención de. nuevas materias primas para diferentes sectores industriales.

PDF

Citas

  1. A. Zuorro, J. B. García-Martínez, A. F. Barajas-Solano, “The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review,” Catalysts., Vol 11, no. 1, pp.1-25, 2021, doi: 10.3390/catal11010022. DOI: https://doi.org/10.3390/catal11010022
  2. J. A. Garrido-Cardenas, F. Manzano-Agugliaro, F. G. Acien-Fernandez, and E. Molina-Grima, “Microalgae research worldwide,” Algal Res., vol. 35, no. May, pp. 50–60, 2018, doi: 10.1016/j.algal.2018.08.005. DOI: https://doi.org/10.1016/j.algal.2018.08.005
  3. W. J. Bourne, “What’s it all about?,” Engineer, vol. 294, no. 7781, p. 16, 2009.
  4. Y. Chisti, “Biodiesel from microalgae,” Biotechnol. Adv., vol. 25, no. 3, pp. 294–306, 2007, doi: 10.1016/j.biotechadv.2007.02.001. DOI: https://doi.org/10.1016/j.biotechadv.2007.02.001
  5. B. Wang, Y. Li, N. Wu, and C. Q. Lan, “CO2 bio-mitigation using microalgae,” Appl. Microbiol. Biotechnol., vol. 79, no. 5, pp. 707–718, 2008, doi: 10.1007/s00253-008-1518-y. DOI: https://doi.org/10.1007/s00253-008-1518-y
  6. O. Pulz and W. Gross, “Valuable products from biotechnology of microalgae,” Appl. Microbiol. Biotechnol., vol. 65, no. 6, pp. 635–648, 2004, doi: 10.1007/s00253-004-1647-x. DOI: https://doi.org/10.1007/s00253-004-1647-x
  7. M. R. Brown, S. W. Jeffrey, J. K. Volkman, and G. A. Dunstan, “Nutritional properties of microalgae for mariculture,” in Aquaculture, May 1997, vol. 151, no. 1–4, pp. 315–331, doi: 10.1016/S0044-8486(96)01501-3. DOI: https://doi.org/10.1016/S0044-8486(96)01501-3
  8. L. M. Lubián et al., “Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments,” J. Appl. Phycol., vol. 12, no. 3–5, pp. 249–255, 2000, doi: 10.1023/a:1008170915932. DOI: https://doi.org/10.1023/A:1008170915932
  9. M. R. Brown, M. Mular, I. Miller, C. Farmer, and C. Trenerry, “The vitamin content of microalgae used in aquaculture,” J. Appl. Phycol., vol. 11, no. 3, pp. 247–255, 1999, doi: 10.1023/A:1008075903578. DOI: https://doi.org/10.1023/A:1008075903578
  10. A. F. Barajas-Solano, A. Guzmán-Monsalve, V. Kafarov, “Effect of Carbon-Nitrogen Ratio for the Biomass Production, Hydrocarbons and Lipids on Botryoccus Braunii UIS 003,” Chem. Eng. Trans. Vol 49, pp. 247–252, 2016, doi:10.3303/CET1649042.
  11. P. Metzger and C. Largeau, “Botryococcus braunii: A rich source for hydrocarbons and related ether lipids,” Appl. Microbiol. Biotechnol., vol. 66, no. 5, pp. 486–496, 2005, doi: 10.1007/s00253-004-1779-z. DOI: https://doi.org/10.1007/s00253-004-1779-z
  12. P. Mehta et al., “Continuous non-destructive hydrocarbon extraction from Botryococcus braunii BOT-22,” Algal Res., vol. 41, p. 101537, Aug. 2019, doi: 10.1016/j.algal.2019.101537. DOI: https://doi.org/10.1016/j.algal.2019.101537
  13. I. T. D. Cabanelas, S. S. I. Marques, C. O. de Souza, J. I. Druzian, and I. A. Nascimento, “Botryococcus, what to do with it? Effect of nutrient concentration on biorefinery potential,” Algal Res., vol. 11, pp. 43–49, 2015, doi: 10.1016/j.algal.2015.05.009. DOI: https://doi.org/10.1016/j.algal.2015.05.009
  14. A. Banerjee, R. Sharma, Y. Chisti, and U. C. Banerjee, “Botryococcus braunii: A renewable source of hydrocarbons and other chemicals,” Crit. Rev. Biotechnol., vol. 22, no. 3, pp. 245–279, 2002, doi: 10.1080/07388550290789513. DOI: https://doi.org/10.1080/07388550290789513
  15. P. Metzger, C. Berkaloff, E. Casadevall, and A. Coute, “Alkadiene- and botryococcene-producing races of wild strains of Botryococcus braunii,” Phytochemistry, vol. 24, no. 10, pp. 2305–2312, Jan. 1985, doi: 10.1016/S0031-9422(00)83032-0. DOI: https://doi.org/10.1016/S0031-9422(00)83032-0
  16. Z. Huang and C. Dale Poulter, “Tetramethylsqualene, a triterpene from Botryococcus braunii var. showa,” Phytochemistry, vol. 28, no. 5, pp. 1467–1470, Jan. 1989, doi: 10.1016/S0031-9422(00)97766-5. DOI: https://doi.org/10.1016/S0031-9422(00)97766-5
  17. C. Dayananda, R. Sarada, M. Usha Rani, T. R. Shamala, and G. A. Ravishankar, “Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media,” Biomass and Bioenergy, vol. 31, no. 1, pp. 87–93, 2007, doi: 10.1016/j.biombioe.2006.05.001. DOI: https://doi.org/10.1016/j.biombioe.2006.05.001
  18. T. Tanoi, M. Kawachi, and M. M. Watanabe, “Effects of carbon source on growth and morphology of Botryococcus braunii,” J. Appl. Phycol., vol. 23, no. 1, pp. 25–33, 2011, doi: 10.1007/s10811-010-9528-4. DOI: https://doi.org/10.1007/s10811-010-9528-4
  19. J. Y. An, S. J. Sim, J. S. Lee, and B. W. Kim, “Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii,” J. Appl. Phycol., vol. 15, no. 2–3, pp. 185–191, 2003, doi: 10.1023/A:1023855710410. DOI: https://doi.org/10.1023/A:1023855710410
  20. Y. Ge, J. Liu, and G. Tian, “Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor,” Bioresour. Technol., vol. 102, no. 1, pp. 130–134, 2011, doi: 10.1016/j.biortech.2010.06.051. DOI: https://doi.org/10.1016/j.biortech.2010.06.051
  21. N. J. van Eck, L. Waltman, “Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping”, Scientometrics, Vol 84, no. 2, pp. 523–538, 2010, doi:10.1007/s11192-009-0146-3. DOI: https://doi.org/10.1007/s11192-009-0146-3
  22. P. Cheng et al., “Cobalt enrichment enhances the tolerance of Botryococcus braunii to high concentration of CO2,” Bioresour. Technol., vol. 297, p. 122385, 2020, doi: 10.1016/j.biortech.2019.122385. DOI: https://doi.org/10.1016/j.biortech.2019.122385
  23. C. Griehl, C. Kleinert, C. Griehl, and S. Bieler, “Design of a continuous milking bioreactor for non-destructive hydrocarbon extraction from Botryococcus braunii,” J. Appl. Phycol., vol. 27, no. 5, pp. 1833–1843, Oct. 2015, doi: 10.1007/s10811-014-0472-6. DOI: https://doi.org/10.1007/s10811-014-0472-6
  24. J. Jin, C. Dupré, J. Legrand, and D. Grizeau, “Extracellular hydrocarbon and intracellular lipid accumulation are related to nutrient-sufficient conditions in pH-controlled chemostat cultures of the microalga Botryococcus braunii SAG 30.81,” Algal Res., vol. 17, pp. 244–252, Jul. 2016, doi: 10.1016/j.algal.2016.05.007. DOI: https://doi.org/10.1016/j.algal.2016.05.007
  25. M. N. Metsoviti, G. Papapolymerou, I. T. Karapanagiotidis, and N. Katsoulas, “Comparison of growth rate and nutrient content of five microalgae species cultivated in greenhouses,” Plants, vol. 8, no. 8, Aug. 2019, doi: 10.3390/plants8080279. DOI: https://doi.org/10.3390/plants8080279
  26. K. A. Al-Hothaly, M. Taha, B. H. May, S. Stylianou, A. S. Ball, and E. M. Adetutu, “The effect of nutrients and environmental conditions on biomass and oil production in Botryococcus braunii Race B strains,” Eur. J. Phycol., vol. 51, no. 1, pp. 1–10, Jan. 2016, doi: 10.1080/09670262.2015.1071875. DOI: https://doi.org/10.1080/09670262.2015.1071875
  27. C. F. de Azevedo Barros, A. M. M. dos Santos, and F. A. R. Barbosa, “Phytoplankton diversity in the middle rio doce lake system of southeastern brazil,” Acta Bot. Brasilica, vol. 27, no. 2, pp. 327–346, 2013, doi: 10.1590/S0102-33062013000200009. DOI: https://doi.org/10.1590/S0102-33062013000200009
  28. I. A. Nascimento et al., “Screening Microalgae Strains for Biodiesel Production: Lipid Productivity and Estimation of Fuel Quality Based on Fatty Acids Profiles as Selective Criteria,” Bioenergy Res., vol. 6, no. 1, pp. 1–13, 2013, doi: 10.1007/s12155-012-9222-2. DOI: https://doi.org/10.1007/s12155-012-9222-2
  29. E. B. Sydney et al., “Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage,” Appl. Energy, vol. 88, no. 10, pp. 3291–3294, 2011, doi: 10.1016/j.apenergy.2010.11.024. DOI: https://doi.org/10.1016/j.apenergy.2010.11.024
  30. J. Hussain, X. Wang, L. Sousa, R. Ali, B. E. Rittmann, and W. Liao, “Using non-metric multi-dimensional scaling analysis and multi-objective optimization to evaluate green algae for production of proteins, carbohydrates, lipids, and simultaneously fix carbon dioxide,” Biomass and Bioenergy, vol. 141, p. 105711, Oct. 2020, doi: 10.1016/j.biombioe.2020.105711. DOI: https://doi.org/10.1016/j.biombioe.2020.105711
  31. P. Neumann, A. Torres, F. G. Fermoso, R. Borja, and D. Jeison, “Anaerobic co-digestion of lipid-spent microalgae with waste activated sludge and glycerol in batch mode,” Int. Biodeterior. Biodegrad., vol. 100, pp. 85–88, May 2015, doi: 10.1016/j.ibiod.2015.01.020. DOI: https://doi.org/10.1016/j.ibiod.2015.01.020
  32. D. Rojo, M. Zapata, A. Maureira, R. Guiñez, C. Wulff-Zottele, and M. Rivas, “High-resolution melting analysis for identification of microalgae species,” J. Appl. Phycol., vol. 32, no. 6, pp. 3901–3911, Dec. 2020, doi: 10.1007/s10811-020-02240-y. DOI: https://doi.org/10.1007/s10811-020-02240-y
  33. M. Cao, F. Zhang, Y. Mao, F. Kong, and D. Wang, “Characterization of the squalene-rich Botryococcus braunii Abt02 strain,” J. Oceanol. Limnol., vol. 37, no. 2, pp. 675–684, Mar. 2019, doi: 10.1007/s00343-019-8053-9. DOI: https://doi.org/10.1007/s00343-019-8053-9
  34. S. K. Wang, F. Wang, A. R. Stiles, C. Guo, and C. Z. Liu, “Botryococcus braunii cells: Ultrasound-intensified outdoor cultivation integrated with in situ magnetic separation,” Bioresour. Technol., vol. 167, pp. 376–382, 2014, doi: 10.1016/j.biortech.2014.06.028. DOI: https://doi.org/10.1016/j.biortech.2014.06.028
  35. J. Liu, Y. Ge, H. Cheng, L. Wu, and G. Tian, “Aerated swine lagoon wastewater: A promising alternative medium for Botryococcus braunii cultivation in open system,” Bioresour. Technol., vol. 139, pp. 190–194, 2013, doi: 10.1016/j.biortech.2013.04.036. DOI: https://doi.org/10.1016/j.biortech.2013.04.036
  36. Z. Xu, J. He, S. Qi, and J. Liu, “Nitrogen deprivation-induced de novo transcriptomic profiling of the oleaginous green alga Botryococcus braunii 779,” Genomics Data, vol. 6, pp. 231–233, Dec. 2015, doi: 10.1016/j.gdata.2015.09.019. DOI: https://doi.org/10.1016/j.gdata.2015.09.019
  37. Y. Shen, W. Zhu, C. Chen, and Y. Nie, “Glycine induced culture-harvesting strategy for Botryococcus braunii,” J. Biosci. Bioeng., vol. 121, no. 4, pp. 424–430, Apr. 2016, doi: 10.1016/j.jbiosc.2015.08.004 DOI: https://doi.org/10.1016/j.jbiosc.2015.08.004
  38. H. Zheng, Z. Gao, J. Yin, X. Tang, X. Ji, and H. Huang, “Harvesting of microalgae by flocculation with poly (γ-glutamic acid),” Bioresour. Technol., vol. 112, pp. 212–220, 2012, doi: 10.1016/j.biortech.2012.02.086. DOI: https://doi.org/10.1016/j.biortech.2012.02.086
  39. J. Q. Lai, Z. L. Hu, P. W. Wang, and Z. Yang, “Enzymatic production of microalgal biodiesel in ionic liquid [BMIm][PF 6],” Fuel, vol. 95, pp. 329–333, 2012, doi: 10.1016/j.fuel.2011.11.001 DOI: https://doi.org/10.1016/j.fuel.2011.11.001
  40. J. G. Qin and Y. Li, “Optimization of the growth environment of botryococcus braunii strain chn 357,” J. Freshw. Ecol., vol. 21, no. 1, pp. 169–176, 2006, doi: 10.1080/02705060.2006.9664110. DOI: https://doi.org/10.1080/02705060.2006.9664110
  41. Y. Li and J. G. Qin, “Comparison of growth and lipid content in three Botryococcus braunii strains,” J. Appl. Phycol., vol. 17, no. 6, pp. 551–556, 2005, doi: 10.1007/s10811-005-9005-7. DOI: https://doi.org/10.1007/s10811-005-9005-7
  42. H. Wang et al., “Microalgal interstrains differences in algal-bacterial biofloc formation during liquid digestate treatment,” Bioresour. Technol., vol. 289, p. 121741, Oct. 2019, doi: 10.1016/j.biortech.2019.121741. DOI: https://doi.org/10.1016/j.biortech.2019.121741
  43. H. Du et al., “Plant growth regulators affect biomass, protein, carotenoid, and lipid production in Botryococcus braunii,” Aquac. Int., vol. 28, no. 3, pp. 1319–1340, 2020, doi: 10.1007/s10499-020-00528-x. DOI: https://doi.org/10.1007/s10499-020-00528-x
  44. C. Peng, S. Li, J. Zheng, S. Huang, and D. Li, “Harvesting Microalgae with Different Sources of Starch-Based Cationic Flocculants,” Appl. Biochem. Biotechnol., vol. 181, no. 1, pp. 112–124, Jan. 2017, doi: 10.1007/s12010-016-2202-9. DOI: https://doi.org/10.1007/s12010-016-2202-9
  45. J. Hoeniges et al., “Effect of colony formation on light absorption by Botryococcus braunii,” Algal Res., vol. 50, p. 101985, Sep. 2020, doi: 10.1016/j.algal.2020.101985. DOI: https://doi.org/10.1016/j.algal.2020.101985
  46. X. Zhang, F. Wen, Z. Xu, D. Sun, W. Chew, and J. Liu, “De novo transcriptomic analysis of the oleaginous alga Botryococcus braunii AC768 (Chlorophyta),” J. Appl. Phycol., vol. 31, no. 1, pp. 255–267, Feb. 2019, doi: 10.1007/s10811-018-1577-0. DOI: https://doi.org/10.1007/s10811-018-1577-0
  47. E. Bermejo, Á. Muñoz, A. Ramos-Merchante, C. Vílchez, I. Garbayo, and M. Cuaresma, “Medium optimisation as a first step towards the feasible production of biopolymers with Botryococcus braunii,” J. Appl. Phycol., vol. 32, no. 6, pp. 3667–3678, Dec. 2020, doi: 10.1007/s10811-020-02245-7. DOI: https://doi.org/10.1007/s10811-020-02245-7
  48. P. Singh et al., “Utilization of algal consortium to produce biofuels and byproducts for reducing pollution load,” Pollution, vol. 6, no. 2, pp. 353–366, 2020, doi: 10.22059/POLL.2020.292916.714.
  49. V. Ashokkumar, E. Agila, P. Sivakumar, Z. Salam, R. Rengasamy, and F. N. Ani, “Optimization and characterization of biodiesel production from microalgae Botryococcus grown at semi-continuous system,” Energy Convers. Manag., vol. 88, pp. 936–946, 2014, doi: 10.1016/j.enconman.2014.09.019. DOI: https://doi.org/10.1016/j.enconman.2014.09.019
  50. J. Talukdar, M. C. Kalita, B. C. Goswami, D. D. Hong, and H. C. Das, “Liquid hydrocarbon production potential of a novel strain of the microalga Botryococcus braunii: Assessing the reliability of in situ hydrocarbon recovery by wet process solvent extraction,” Energy and Fuels, vol. 28, no. 6, pp. 3747–3758, 2014, doi: 10.1021/ef402298r DOI: https://doi.org/10.1021/ef402298r
  51. V. Ashokkumar, R. Rengasamy, S. Deepalakshmi, A. Sivalingam, and P. Sivakumar, “Mass cultivation of microalgae and extraction of total hydrocarbons: A kinetic and thermodynamic study,” Fuel, vol. 119, pp. 308–312, 2014, doi: DOI: https://doi.org/10.1016/j.fuel.2013.11.062
  52. 1016/j.fuel.2013.11.062. DOI: https://doi.org/10.1088/1475-7516/2013/11/062
  53. V. Ashokkumar and R. Rengasamy, “Mass culture of Botryococcus braunii Kutz. under open raceway pond for biofuel production,” Bioresour. Technol., vol. 104, pp. 394–399, 2012, doi: 10.1016/j.biortech.2011.10.093. DOI: https://doi.org/10.1016/j.biortech.2011.10.093
  54. A. Ranga Rao, V. Baskaran, R. Sarada, and G. A. Ravishankar, “In vivo bioavailability and antioxidant activity of carotenoids from microalgal biomass - A repeated dose study,” Food Res. Int., vol. 54, no. 1, pp. 711–717, 2013, doi: 10.1016/j.foodres.2013.07.067. DOI: https://doi.org/10.1016/j.foodres.2013.07.067
  55. O. Blifernez-Klassen et al., “Metabolic survey of Botryococcus braunii: Impact of the physiological state on product formation,” PLoS One, vol. 13, no. 6, p. e0198976, Jun. 2018, doi: 10.1371/journal.pone.0198976. DOI: https://doi.org/10.1371/journal.pone.0198976
  56. K. Furuhashi, F. Hasegawa, M. Yamauchi, Y. Kaizu, and K. Imou, “Improving the energy balance of hydrocarbon production using an inclined solid⇓liquid separator with a wedge-wire screen and easy hydrocarbon recovery from botryococcus braunii,” Energies, vol. 13, no. 6, 2020, doi: 10.3390/en13164139. DOI: https://doi.org/10.3390/en13164139
  57. R. A. Nugroho, D. J. N. Subagyono, and E. T. Arung, “Isolation and characterization of Botryococcus braunii from a freshwater environment in Tenggarong, Kutai Kartanegara, Indonesia,” Biodiversitas, vol. 21, no. 5, pp. 2331–2336, 2020, doi: 10.13057/biodiv/d210565. DOI: https://doi.org/10.13057/biodiv/d210565
  58. B. A. Jackson, P. A. Bahri, and N. R. Moheimani, “Non-destructive extraction of lipids from Botryococcus braunii and its potential to reduce pond area and nutrient costs,” Algal Res., vol. 47, p. 101833, May 2020, doi: 10.1016/j.algal.2020.101833. DOI: https://doi.org/10.1016/j.algal.2020.101833
  59. M. Wan et al., “High-yield cultivation of Botryococcus braunii for biomass and hydrocarbons,” Biomass and Bioenergy, vol. 131, p. 105399, Dec. 2019, doi: 10.1016/j.biombioe.2019.105399. DOI: https://doi.org/10.1016/j.biombioe.2019.105399
  60. Y. T. Huang et al., “Advances in bioconversion of microalgae with high biomass and lipid productivity,” J. Taiwan Inst. Chem. Eng., vol. 79, pp. 37–42, Oct. 2017, doi: 10.1016/j.jtice.2017.05.026. DOI: https://doi.org/10.1016/j.jtice.2017.05.026
  61. L. Hou, H. Park, S. Okada, and T. Ohama, “Release of single cells from the colonial oil-producing alga Botryococcus braunii by chemical treatments,” Protoplasma, vol. 251, no. 1, pp. 191–199, 2014, doi: 10.1007/s00709-013-0537-4. DOI: https://doi.org/10.1007/s00709-013-0537-4
  62. M. Baba, M. Ioki, N. Nakajima, Y. Shiraiwa, and M. M. Watanabe, “Transcriptome analysis of an oil-rich race A strain of Botryococcus braunii (BOT-88-2) by de novo assembly of pyrosequencing cDNA reads,” Bioresour. Technol., vol. 109, pp. 282–286, 2012, doi: 10.1016/j.biortech.2011.10.033. DOI: https://doi.org/10.1016/j.biortech.2011.10.033
  63. M. Ioki, M. Baba, N. Nakajima, Y. Shiraiwa, and M. M. Watanabe, “Transcriptome analysis of an oil-rich race B strain of Botryococcus braunii (BOT-70) by de novo assembly of 5’-end sequences of full-length cDNA clones,” Bioresour. Technol., vol. 109, pp. 277–281, 2012, doi: 10.1016/j.biortech.2011.11.047. DOI: https://doi.org/10.1016/j.biortech.2011.11.047
  64. A. Magota, K. Saga, S. Okada, S. Atobe, and K. Imou, “Effect of thermal pretreatments on hydrocarbon recovery from Botryococcus braunii,” Bioresour. Technol., vol. 123, pp. 195–198, 2012, doi: 10.1016/j.biortech.2012.07.095. DOI: https://doi.org/10.1016/j.biortech.2012.07.095
  65. M. Kawachi, T. Tanoi, M. Demura, K. Kaya, and M. M. Watanabe, “Relationship between hydrocarbons and molecular phylogeny of Botryococcus braunii,” Algal Res., vol. 1, no. 2, pp. 114–119, 2012, doi: 10.1016/j.algal.2012.05.003. DOI: https://doi.org/10.1016/j.algal.2012.05.003
  66. R. S. Wijihastuti, N. R. Moheimani, P. A. Bahri, J. J. Cosgrove, and M. M. Watanabe, “Growth and photosynthetic activity of Botryococcus braunii biofilms,” J. Appl. Phycol., vol. 29, no. 3, pp. 1123–1134, Jun. 2017, doi: 10.1007/s10811-016-1032-z. DOI: https://doi.org/10.1007/s10811-016-1032-z
  67. H. Kawashima and M. Kijima, “Selective Synthesis of Botryococcene Pentaepoxide - The Chemical Modifications of the Algal Biomass Oil,” Chemistry Select, vol. 3, no. 33, pp. 9589–9591, Sep. 2018, doi: 10.1002/slct.201801823. DOI: https://doi.org/10.1002/slct.201801823
  68. M. Demura, M. Ioki, M. Kawachi, N. Nakajima, and M. M. Watanabe, “Desiccation tolerance of Botryococcus braunii (Trebouxiophyceae, Chlorophyta) and extreme temperature tolerance of dehydrated cells,” J. Appl. Phycol., vol. 26, no. 1, pp. 49–53, 2014, doi: 10.1007/s10811-013-0059-7. DOI: https://doi.org/10.1007/s10811-013-0059-7
  69. R. Niitsu et al., “Changes in the hydrocarbon-synthesizing activity during growth of Botryococcus braunii B70,” Bioresour. Technol., vol. 109, pp. 297–299, 2012, doi: 10.1016/j.biortech.2011.08.072. DOI: https://doi.org/10.1016/j.biortech.2011.08.072
  70. M. Baba, F. Kikuta, I. Suzuki, M. M. Watanabe, and Y. Shiraiwa, “Wavelength specificity of growth, photosynthesis, and hydrocarbon production in the oil-producing green alga Botryococcus braunii,” Bioresour. Technol., vol. 109, pp. 266–270, 2012, doi: 10.1016/j.biortech.2011.05.059. DOI: https://doi.org/10.1016/j.biortech.2011.05.059
  71. S. Ravi et al., “Influence of different culture conditions on yield of biomass and value added products in microalgae,” Dyn. Biochem. Process Biotechnol. Mol. Biol., vol. 6, no. 2, pp. 77–85, 2012.
  72. M. Hashizume, M. Yoshida, M. Demura, and M. M. Watanabe, “Culture study on utilization of phosphite by green microalgae,” J. Appl. Phycol., vol. 32, no. 2, pp. 889–899, Apr. 2020, doi: 10.1007/s10811-020-02088-2. DOI: https://doi.org/10.1007/s10811-020-02088-2
  73. H. Uchida et al., “Isolation and Characterization of Two Squalene Epoxidase Genes from Botryococcus braunii, Race B,” PLoS One, vol. 10, no. 4, p. e0122649, Apr. 2015, doi: 10.1371/journal.pone.0122649. DOI: https://doi.org/10.1371/journal.pone.0122649
  74. D. H. Lee, C. Y. Bae, J. I. Han, and J. K. Park, “Quantitative estimation of the lipid productivity of single algae cells in alginate hydrogel microbeads,” 2013 Transducers Eurosensors XXVII 17th Int. Conf. Solid-State Sensors, Actuators Microsystems, TRANSDUCERS EUROSENSORS 2013, no. June, pp. 1519–1522, 2013, doi: 10.1109/Transducers.2013.6627070. DOI: https://doi.org/10.1109/Transducers.2013.6627070
  75. H.-J. Choi and S.-W. Yu, “Influence of crude glycerol on the biomass and lipid content of microalgae,” Biotechnol. Biotechnol. Equip., vol. 29, no. 3, pp. 506–513, May 2015, doi: 10.1080/13102818.2015.1013988. DOI: https://doi.org/10.1080/13102818.2015.1013988
  76. G. H. Gim et al., “Comparison of biomass production and total lipid content of freshwater green microalgae cultivated under various culture conditions,” Bioprocess Biosyst. Eng., vol. 37, no. 2, pp. 99–106, 2014, doi: 10.1007/s00449-013-0920-8. DOI: https://doi.org/10.1007/s00449-013-0920-8
  77. J. C. Lee, J. K. Jang, and H. W. Kim, “Sulfonamide degradation and metabolite characterization in submerged membrane photobioreactors for livestock excreta treatment,” Chemosphere, vol. 261, p. 127604, Dec. 2020, doi: 10.1016/j.chemosphere.2020.127604 DOI: https://doi.org/10.1016/j.chemosphere.2020.127604
  78. B. H. Kim et al., “Simple, rapid and cost-effective method for high quality nucleic acids extraction from different strains of Botryococcus braunii,” PLoS One, vol. 7, no. 5, pp. 1–9, 2012, doi: 10.1371/journal.pone.0037770. DOI: https://doi.org/10.1371/journal.pone.0037770
  79. B. Moutel et al., “Development of a screening procedure for the characterization of Botryococcus braunii strains for biofuel application,” Process Biochem., vol. 51, no. 11, pp. 1855–1865, Nov. 2016, doi: 10.1016/j.procbio.2016.05.002. DOI: https://doi.org/10.1016/j.procbio.2016.05.002
  80. E. Yildiz-Ozturk, E. Ilhan-Ayisigi, A. Togtema, J. Gouveia, and O. Yesil-Celiktas, “Effects of hydrostatic pressure and supercritical carbon dioxide on the viability of Botryococcus braunii algae cells,” Bioresour. Technol., vol. 256, pp. 328–332, May 2018, doi: 10.1016/j.biortech.2018.02.041. DOI: https://doi.org/10.1016/j.biortech.2018.02.041
  81. C. Sambles et al., “Metagenomic analysis of the complex microbial consortium associated with cultures of the oil-rich alga Botryococcus braunii,” Microbiologyopen, vol. 6, no. 4, Aug. 2017, doi: 10.1002/mbo3.482. DOI: https://doi.org/10.1002/mbo3.482
  82. K. Ekinci, I. Erdal, Ö. Uysal, F. Ö. Uysal, H. Tunce, and A. Doğan, “Anaerobic Digestion of Three Microalgae Biomasses and Assessment of Digestates as Biofertilizer for Plant Growth,” Environ. Prog. Sustain. Energy, vol. 38, no. 3, p. e13024, May 2019, doi: 10.1002/ep.13024. DOI: https://doi.org/10.1002/ep.13024
  83. J. L. Bicas, D. M. M. Kleinegris, and M. J. Barbosa, “Use of methylene blue uptake for assessing cell viability of colony-forming microalgae,” Algal Res., vol. 8, pp. 174–180, Mar. 2015, doi: 10.1016/j.algal.2015.02.004. DOI: https://doi.org/10.1016/j.algal.2015.02.004
  84. S. Ruangsomboon, J. Dimak, B. Jongput, I. Wiwatanaratanabutr, and P. Kanyawongha, “Outdoor open pond batch production of green microalga Botryococcus braunii for high hydrocarbon production: enhanced production with salinity,” Sci. Rep., vol. 10, no. 1, pp. 1–12, 2020, doi: 10.1038/s41598-020-59645-5. DOI: https://doi.org/10.1038/s41598-020-59645-5
  85. T. Thurakit, C. Pumas, W. Pathom-Aree, J. Pekkoh, and Y. Peerapornpisal, “Enhancement of biomass, lipid and hydrocarbon production from green microalga, botryococcus braunii AARL G037, by UV-C induction,” Chiang Mai J. Sci., vol. 45, no. 7, pp. 2637–2651, 2018.
  86. S. Ruangsomboon, P. Sornchai, and N. Prachom, “Enhanced hydrocarbon production and improved biodiesel qualities of Botryococcus braunii KMITL 5 by vitamins thiamine, biotin and cobalamin supplementation,” Algal Res., vol. 29, pp. 159–169, Jan. 2018, doi: 10.1016/j.algal.2017.11.028. DOI: https://doi.org/10.1016/j.algal.2017.11.028
  87. C. Yeesang and B. Cheirsilp, “Low-cost production of green microalga Botryococcus braunii biomass with high lipid content through mixotrophic and photoautotrophic cultivation,” Appl. Biochem. Biotechnol., vol. 174, no. 1, pp. 116–129, Sep. 2014, doi: 10.1007/s12010-014-1041-9. DOI: https://doi.org/10.1007/s12010-014-1041-9
  88. S. Boonma, P. Vacharapiyasophon, Y. Peerapornpisal, J. Pekkoh, and C. Pumas, “Isolation and cultivation of Botryococcus braunii Kützing from Northern Thailand,” Chiang Mai J. Sci., vol. 41, no. 2, pp. 298–306, 2014.
  89. L. M. Serrano-Bermúdez, L. C. Montenegro-Ruíz, and R. D. Godoy-Silva, “Effect of CO2, aeration, irradiance, and photoperiod on biomass and lipid accumulation in a microalga autotrophically cultured and selected from four Colombian-native strains,” Bioresour. Technol. Reports, vol. 12, p. 100578, Dec. 2020, doi: 10.1016/j.biteb.2020.100578. DOI: https://doi.org/10.1016/j.biteb.2020.100578
  90. H. J. Chun et al., “Raman spectra and DFT calculations for tetraterpene hydrocarbons from the L race of the green microalga Botryococcus braunii,” J. Mol. Struct., vol. 1129, pp. 216–221, 2017, doi: 10.1016/j.molstruc.2016.09.081. DOI: https://doi.org/10.1016/j.molstruc.2016.09.081
  91. A. Vonshak, “Recent advances in microalgal biotechnology,” Biotechnol. Adv., vol. 8, no. 4, pp. 709–727, 1990, doi: 10.1016/0734-9750(90)91993-Q. DOI: https://doi.org/10.1016/0734-9750(90)91993-Q
  92. H. H. Senousy, G. W. Beakes, and E. Hack, “Phylogenetic placement of Botryococcus braunii (Trebouxiophyceae) and Botryococcus sudeticus isolate UTEX 2629 (Chlorophyceae),” J. Phycol., vol. 40, no. 2, pp. 412–423, 2004, doi: 10.1046/j.1529-8817.2004.03173.x. DOI: https://doi.org/10.1046/j.1529-8817.2004.03173.x
  93. S. M. Navarro Gallón et al., “Characterization and study of the antibacterial mechanisms of silver nanoparticles prepared with microalgal exopolysaccharides,” Mater. Sci. Eng. C, vol. 99, pp. 685–695, Jun. 2019, doi: 10.1016/j.msec.2019.01.134. DOI: https://doi.org/10.1016/j.msec.2019.01.134
  94. D. G. Lee, D. J. Choi, and J. K. Park, “Ketoisomeric conversion of glucose derived from microalgal biomasses,” Process Biochem., vol. 50, no. 6, pp. 941–947, Jun. 2015, doi: 10.1016/j.procbio.2015.03.011. DOI: https://doi.org/10.1016/j.procbio.2015.03.011
  95. J. C. Servaites, J. L. Faeth, and S. S. Sidhu, “A dye binding method for measurement of total protein in microalgae,” Anal. Biochem., vol. 421, no. 1, pp. 75–80, 2012, doi: 10.1016/j.ab.2011.10.047. DOI: https://doi.org/10.1016/j.ab.2011.10.047
  96. R. E. Summons, P. Metzger, C. Largeau, A. P. Murray, and J. M. Hope, “Polymethylsqualanes from Botryococcus braunii in lacustrine sediments and crude oils,” Org. Geochem., vol. 33, no. 2, pp. 99–109, 2002, doi: 10.1016/S0146-6380(01)00147-4. DOI: https://doi.org/10.1016/S0146-6380(01)00147-4
  97. S. Pinzi et al., “Latest trends in feedstocks for biodiesel production,” Biofuels, Bioproducts and Biorefining, vol. 8, no. 1, pp. 126–143, 2013, doi:10.1002/bbb.1435 DOI: https://doi.org/10.1002/bbb.1435
  98. R. H. Wijffels and M. J. Barbosa, “Perspective. An Outlook on Microalgal Biofuels,” Sci. r, vol. Vol. 329, no. August, pp. 796–799, 2010. DOI: https://doi.org/10.1126/science.1189003
  99. B. Jackson, P. A. Bahri, and N. R. Moheimani, “Response of Botryococcus braunii to repetitive non-destructive extraction of lipids with heptane.” no. October, 2018.
  100. A. Demirbas, “Progress and recent trends in biodiesel fuels,” Energy Convers. Manag., vol. 50, no. 1, pp. 14–34, Jan. 2009, doi: 10.1016/j.enconman.2008.09.001. DOI: https://doi.org/10.1016/j.enconman.2008.09.001
  101. B. Abdullah et al., “Fourth generation biofuel: A review on risks and mitigation strategies,” Renewable and Sustainable Energy Reviews, vol. 107. Elsevier Ltd, pp. 37–50, Jun. 01, 2019, doi: 10.1016/j.rser.2019.02.018. DOI: https://doi.org/10.1016/j.rser.2019.02.018
  102. P. K. Thomas et al., “A natural algal polyculture outperforms an assembled polyculture in wastewater-based open pond biofuel production,” Algal Res., vol. 40, no. March, p. 101488, 2019, doi: 10.1016/j.algal.2019.101488. DOI: https://doi.org/10.1016/j.algal.2019.101488
  103. Y. Chisti, “Biodiesel from microalgae beats bioethanol,” Trends Biotechnol., vol. 26, no. 3, pp. 126–131, 2008, doi: 10.1016/j.tibtech.2007.12.002. DOI: https://doi.org/10.1016/j.tibtech.2007.12.002
  104. J. D. Gouveia et al., “Botryococcus braunii strains compared for biomass productivity, hydrocarbon and carbohydrate content,” J. Biotechnol., vol. 248, pp. 77–86, 2017, doi: 10.1016/j.jbiotec.2017.03.008. DOI: https://doi.org/10.1016/j.jbiotec.2017.03.008
  105. C. Largeau, E. Casadevall, C. Berkaloff, and P. Dhamelincourt, “Sites of accumulation and composition of hydrocarbons in Botryococcus braunii,” Phytochemistry, vol. 19, no. 6, pp. 1043–1051, Jan. 1980, doi: 10.1016/0031-9422(80)83054-8. DOI: https://doi.org/10.1016/0031-9422(80)83054-8
  106. T. Manchanda, R. Tyagi, and D. K. Sharma, “Application of nutrient stress conditions for hydrocarbon and oil production by Botryococcus braunii,” Biofuels, vol. 10, no. 3, pp. 271–277, 2019, doi: 10.1080/17597269.2015.1132373. DOI: https://doi.org/10.1080/17597269.2015.1132373
  107. Y. Dote, S. Sawayama, S. Inoue, T. Minowa, and S. ya Yokoyama, “Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction,” Fuel, vol. 73, no. 12, pp. 1855–1857, Dec. 1994, doi: 10.1016/0016-2361(94)90211-9. DOI: https://doi.org/10.1016/0016-2361(94)90211-9
  108. S. S. Khichi, D. Dohare, S. Rohith, S. Sachin, and S. Ghosh, “Specific uptake kinetics of glucose and nitrate in carbon-limited and nitrogen-limited C:N ratio under photoheterotrophic cultural conditions for Botryococcus braunii growth and lipid production,” Bioresour. Technol. Reports, vol. 8, p. 100337, Dec. 2019, doi: 10.1016/j.biteb.2019.100337. DOI: https://doi.org/10.1016/j.biteb.2019.100337
  109. F. M. Lupi, H. M. L. Fernandes, I. Sá-Correia, and J. M. Novais, “Temperature profiles of cellular growth and exopolysaccharide synthesis by Botryococus braunii Kütz. UC 58,” J. Appl. Phycol., vol. 3, no. 1, pp. 35–42, 1991, doi: 10.1007/BF00003917. DOI: https://doi.org/10.1007/BF00003917
  110. S. Ruangsomboon, “Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2,” Bioresour. Technol., vol. 109, pp. 261–265, 2012, doi: 10.1016/j.biortech.2011.07.025. DOI: https://doi.org/10.1016/j.biortech.2011.07.025
  111. T. L. Weiss et al., “Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix,” Eukaryot. Cell, vol. 11, no. 12, pp. 1424–1440, 2012, doi: 10.1128/EC.00184-12. DOI: https://doi.org/10.1128/EC.00184-12
  112. S. Yang, J. Wang, W. Cong, Z. Cai, and F. Ouyang, “Utilization of nitrite as a nitrogen source by Botryococcus braunii,” Biotechnol. Lett., vol. 26, no. 3, pp. 239–243, 2004, doi: 10.1023/B:BILE.0000013722.45527.18. DOI: https://doi.org/10.1023/B:BILE.0000013722.45527.18
  113. V. Cepák and J. Lukavsky, “The Effect of High Irradiances on Growth, Biosynthetic Activities and the Ultrastructure of the Green Alga Botryococcus braunii Strain Droop 1950/807-1,” Algological Studies. vol. 72, pp. 115-131.
  114. X. Miao and Q. Wu, “Biodiesel production from heterotrophic microalgal oil,” Bioresour. Technol., vol. 97, no. 6, pp. 841–846, Apr. 2006, doi: 10.1016/j.biortech.2005.04.008. DOI: https://doi.org/10.1016/j.biortech.2005.04.008
  115. H. L. Fernandes, M. M. Tomé, F. M. Lupi, A. M. Fialho, I. Sá-Correia, and J. M. Novais, “Biosynthesis of high concentrations of an exopolysaccharide during the cultivation of the microalga Botryococcus braunii,” Biotechnol. Lett., vol. 11, no. 6, pp. 433–436, 1989, doi: 10.1007/BF01089478. DOI: https://doi.org/10.1007/BF01089478
  116. K. C. Díaz Bayona and L. A. Garcés, “Effect of different media on exopolysaccharide and biomass production by the green microalga Botryococcus braunii,” J. Appl. Phycol., vol. 26, no. 5, pp. 2087–2095, 2014, doi: 10.1007/s10811-014-0242-5. DOI: https://doi.org/10.1007/s10811-014-0242-5
  117. S. Arad et al., “Superior biolubricant from a species of red microalga,” Langmuir, vol. 22, no. 17, pp. 7313–7317, 2006, doi: 10.1021/la060600x. DOI: https://doi.org/10.1021/la060600x
  118. T. P. Anunciato and P. A. da Rocha Filho, “Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals,” J. Cosmet. Dermatol., vol. 11, no. 1, pp. 51–54, 2012, doi: 10.1111/j.1473-2165.2011.00600.x. DOI: https://doi.org/10.1111/j.1473-2165.2011.00600.x
  119. F. M. Lupi, H. M. L. Fernandes, M. M. Tomé, I. Sá-Correia, and J. M. Novais, “Influence of nitrogen source and photoperiod on exopolysaccharide synthesis by the microalga Botryococcus braunii UC 58,” Enzyme Microb. Technol., vol. 16, no. 7, pp. 546–550, Jul. 1994, doi: 10.1016/0141-0229(94)90116-3. DOI: https://doi.org/10.1016/0141-0229(94)90116-3

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a