Fotocatálisis heterogénea y un proceso biológico anaerobio para el tratamiento de lixiviados
Resumen
La investigación evalúa el tratamiento de lixiviados de vertederos mediante el acoplamiento de fotocatálisis solar TiO2-UV y un proceso biológico anaeróbico (prueba SMA). La fotocatálisis se desarrolla en un Colector Parabólico Compuesto de 0.83 m2 de área, tanque de tratamiento de 20 L y concentración inicial de lixiviados de 400 mg-L−1 DQO; H2O2 (dosis fija 300 mg.L−1) como auxiliar de oxidación y la combinación de diferentes niveles de TiO2 (100, 350, 600 mg.L−1) y pH (3, 6, 9). En el ensayo biológico, para una carga máxima de 4500 mg.L−1 de DQO de lixiviado, 2,0 g.L-1 de SVS de inóculo y un TRH de 23 días, no hubo porcentajes significativos de remoción de DQO, evidenciando el carácter recalcitrante de estos lixiviados. Durante el tratamiento fotocatalítico se presentó una mineralización de 57% COD (100 mg.L−1 TiO2; pH = 3; Energía acumulada = 60 kJ.L−1), lo que evidencia la capacidad del proceso para soportar la carga contaminante del lixiviado. El proceso combinado (AOP-Biológico) permite una mineralización adicional en el proceso biológico en términos de DOC del 21 %, para un aporte total del acoplamiento del 78 %, lo que demuestra la capacidad del AOP para convertir un efluente tóxico en uno con características más adecuadas para su posterior degradación en reactores biológicos anaerobios.
Palabras clave
Biodegradabilidad Anaeróbica, Acoplamiento de tratamientos, Fotocatálisis heterogénea, Lixiviados, Dióxido de Titanio TiO2.
Citas
- A. V. Shah, V.K. Srivastava, S.S. Mohanty, S. Varjani, Municipal solid waste as a sustainable resource for energy production: State-of-the-art review, J. Environ. Chem. Eng. 9 (2021) 105717. https://doi.org/10.1016/j.jece.2021.105717. DOI: https://doi.org/10.1016/j.jece.2021.105717
- P.R. Yaashikaa, P.S. Kumar, A. Saravanan, S. Varjani, R. Ramamurthy, Bioconversion of municipal solid waste into bio-based products: A review on valorisation and sustainable approach for circular bioeconomy, Sci. Total Environ. 748 (2020) 141312. https://doi.org/10.1016/j.scitotenv.2020.141312. DOI: https://doi.org/10.1016/j.scitotenv.2020.141312
- A.J. Calderón Márquez, E.W. Rutkowski, Waste management drivers towards a circular economy in the global south – The Colombian case, Waste Manag. 110 (2020) 53–65. https://doi.org/10.1016/j.wasman.2020.05.016. DOI: https://doi.org/10.1016/j.wasman.2020.05.016
- H. Luo, Y. Zeng, Y. Cheng, D. He, X. Pan, Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment, Sci. Total Environ. 703 (2020) 135468. https://doi.org/10.1016/j.scitotenv.2019.135468. DOI: https://doi.org/10.1016/j.scitotenv.2019.135468
- T. Setiadi, S. Fairus, Hazardous waste landfill leachate treatment using an activated sludge-membrane system, Water Sci. Technol. 48 (2003) 111–117. https://doi.org/10.2166/wst.2003.0459. DOI: https://doi.org/10.2166/wst.2003.0459
- C. Pastore, E. Barca, G. Del Moro, C. Di Iaconi, M. Loos, H.P. Singer, G. Mascolo, Comparison of different types of landfill leachate treatments by employment of nontarget screening to identify residual refractory organics and principal component analysis, Sci. Total Environ. 635 (2018) 984–994. https://doi.org/10.1016/j.scitotenv.2018.04.135. DOI: https://doi.org/10.1016/j.scitotenv.2018.04.135
- K. Parameswari, A. Majid Salim Al Aamri, K. Gopalakrishnan, S. Arunachalam, A. Ali Said Al Alawi, T. Sivasakthivel, Sustainable landfill design for effective municipal solid waste management for resource and energy recovery, Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.04.528. DOI: https://doi.org/10.1016/j.matpr.2021.04.528
- D. Fatta, A. Papadopoulos, M. Loizidou, A study on the landfill leachate and its impact on the groundwater quality of the greater area, Environ. Geochem. Health. 21 (1999) 175–190. https://doi.org/10.1023/A:1006613530137. DOI: https://doi.org/10.1023/A:1006613530137
- W. Sornil, Solid Waste Management Planning Using Multi-Objective Genetic Algorithm, J. Solid Waste Technol. Manag. 40 (2014) 33–43. https://doi.org/10.5276/JSWTM.2014.33. DOI: https://doi.org/10.5276/JSWTM.2014.33
- P. Gautam, S. Kumar, Characterisation of Hazardous Waste Landfill Leachate and its Reliance on Landfill Age and Seasonal Variation: A Statistical Approach, J. Environ. Chem. Eng. 9 (2021) 105496. https://doi.org/10.1016/j.jece.2021.105496. DOI: https://doi.org/10.1016/j.jece.2021.105496
- V.R. Propp, A.O. De Silva, C. Spencer, S.J. Brown, S.D. Catingan, J.E. Smith, J.W. Roy, Organic contaminants of emerging concern in leachate of historic municipal landfills, Environ. Pollut. 276 (2021) 116474. https://doi.org/10.1016/j.envpol.2021.116474. DOI: https://doi.org/10.1016/j.envpol.2021.116474
- H. Najafi Saleh, S. Valipoor, A. Zarei, M. Yousefi, F. Baghal Asghari, A.A. Mohammadi, F. Amiri, S. Ghalehaskar, A. Mousavi Khaneghah, Assessment of groundwater quality around municipal solid waste landfill by using Water Quality Index for groundwater resources and multivariate statistical technique: a case study of the landfill site, Qaem Shahr City, Iran, Environ. Geochem. Health. 42 (2020) 1305–1319. https://doi.org/10.1007/s10653-019-00417-0. DOI: https://doi.org/10.1007/s10653-019-00417-0
- A. Martinez-Lopez, W. Padrón-Hernández, O.F. Rodríguez-Bernal, O. Chiquito-Coyotl, M.A. Escarola-Rosas, J. Hernández-Lara, E.A. Elvira-Hernández, G.A. Méndez, J. Tinoco-Magaña, J. Martínez-Castillo, Alternativas actuales del manejo de lixiviados, 9 (2014) 37–47.
- A. Pellón Arrechea, M. López Torres, M. del C. Lloréns Espinosa, E. Díaz González, Propuesta para tratamiento de lixiviados en un vertedero de residuos sólidos urbanos, Ing. Hidraúlica y Ambient. 36 (2015) 14.
- E. Giraldo, Tratamiento de lixiviados de rellenos sanitarios: avances recientes, Rev. Ing. 0 (2001) 44–55. https://doi.org/10.16924/riua.v0i14.538. DOI: https://doi.org/10.16924/riua.v0i14.538
- X. Duan, H. Sun, Z. Shao, S. Wang, Nonradical reactions in environmental remediation processes: Uncertainty and challenges, Appl. Catal. B Environ. 224 (2018) 973–982. https://doi.org/10.1016/j.apcatb.2017.11.051. DOI: https://doi.org/10.1016/j.apcatb.2017.11.051
- Y. Li, H. Dong, L. Li, L. Tang, R. Tian, R. Li, J. Chen, Q. Xie, Z. Jin, J. Xiao, S. Xiao, G. Zeng, Recent advances in waste water treatment through transition metal sulfides-based advanced oxidation processes, Water Res. 192 (2021) 1–23. https://doi.org/10.1016/j.watres.2021.116850. DOI: https://doi.org/10.1016/j.watres.2021.116850
- P.V. Nidheesh, C. Couras, A. V. Karim, H. Nadais, A review of integrated advanced oxidation processes and biological processes for organic pollutant removal, Chem. Eng. Commun. (2021) 1–43. https://doi.org/10.1080/00986445.2020.1864626. DOI: https://doi.org/10.1080/00986445.2020.1864626
- N. Wardenier, Z. Liu, A. Nikiforov, S.W.H. Van Hulle, C. Leys, Micropollutant elimination by O3, UV and plasma-based AOPs: An evaluation of treatment and energy costs, Chemosphere. 234 (2019) 715–724. https://doi.org/10.1016/j.chemosphere.2019.06.033. DOI: https://doi.org/10.1016/j.chemosphere.2019.06.033
- N. Vela, M. Calín, M.J. Yáñez-Gascón, A. el Aatik, I. Garrido, G. Pérez-Lucas, J. Fenoll, S. Navarro, Removal of Pesticides with Endocrine Disruptor Activity in Wastewater Effluent by Solar Heterogeneous Photocatalysis Using ZnO/Na2S2O8, Water. Air. Soil Pollut. 230 (2019) 1–11. https://doi.org/10.1007/s11270-019-4185-y. DOI: https://doi.org/10.1007/s11270-019-4185-y
- L. Liberatore, M. Bressan, C. Belli, G. Lustrato, G. Ranalli, Chemical and biological combined treatments for the removal of pesticides from wastewaters, Water. Air. Soil Pollut. 223 (2012) 4751–4759. https://doi.org/10.1007/s11270-012-1230-5. DOI: https://doi.org/10.1007/s11270-012-1230-5
- N. Taoufik, W. Boumya, M. Achak, M. Sillanpää, N. Barka, Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals, J. Environ. Manage. 288 (2021) 112404. https://doi.org/10.1016/j.jenvman.2021.112404. DOI: https://doi.org/10.1016/j.jenvman.2021.112404
- D. Becerra, J. Soto, S. Villamizar, F. Machuca-Martínez, L. Ramírez, Alternative for the Treatment of Leachates Generated in a Landfill of Norte de Santander–Colombia, by Means of the Coupling of a Photocatalytic and Biological Aerobic Process, Top. Catal. 63 (2020) 1336–1349. https://doi.org/10.1007/s11244-020-01284-1. DOI: https://doi.org/10.1007/s11244-020-01284-1
- D. Becerra, I. Barrientos, A. Rodriguez, F. Machuca-Martinez, L. Ramírez, Treatment of Agricultural Wastewater with Chlorpyrifos by Coupling of Heterogeneous Photocatalysis and Anaerobic Biological Process, Top. Catal. 63 (2020) 1261–1271. https://doi.org/10.1007/s11244-020-01281-4. DOI: https://doi.org/10.1007/s11244-020-01281-4
- R. Chemlal, L. Azzouz, R. Kernani, N. Abdi, H. Lounici, H. Grib, N. Mameri, N. Drouiche, Combination of advanced oxidation and biological processes for the landfill leachate treatment, Ecol. Eng. 73 (2014) 281–289. https://doi.org/10.1016/j.ecoleng.2014.09.043. DOI: https://doi.org/10.1016/j.ecoleng.2014.09.043
- J.J. Rueda-Marquez, I. Levchuk, P. Fernández Ibañez, M. Sillanpää, A critical review on application of photocatalysis for toxicity reduction of real wastewaters, J. Clean. Prod. 258 (2020) 120694. https://doi.org/10.1016/j.jclepro.2020.120694. DOI: https://doi.org/10.1016/j.jclepro.2020.120694
- M. Hassan, Y. Zhao, B. Xie, Employing TiO2 photocatalysis to deal with landfill leachate: Current status and development, Chem. Eng. J. 285 (2016) 264–275. https://doi.org/10.1016/j.cej.2015.09.093.
- E. Han, K. Vijayarangamuthu, J. Youn, Y.-K. Park, S.-C. Jung, K.-J. Jeon, Degussa P25 TiO2 modified with H2O2 under microwave treatment to enhance photocatalytic properties, Catal. Today. 303 (2018) 305–312. https://doi.org/10.1016/j.cattod.2017.08.057. DOI: https://doi.org/10.1016/j.cattod.2017.08.057
- P. Lozada Torres, A. Pérez, Actividad Metanogénica Específica: una herramienta de control y optimización de sistemas de tratamiento anaerobio de aguas residuales, Univ. Del Val. 9 (2010) 5–14.
- A. Zhu, Y. Qin, J. Wu, M. Ye, Y.-Y. Li, Characterization of biogas production and microbial community in thermophilic anaerobic co-digestion of sewage sludge and paper waste, Bioresour. Technol. 337 (2021) 1–10. https://doi.org/10.1016/j.biortech.2021.125371. DOI: https://doi.org/10.1016/j.biortech.2021.125371
- I.G. Ezemagu, M.I. Ejimofor, M.C. Menkiti, C. Diyoke, Biofertilizer production via composting of digestate obtained from anaerobic digestion of post biocoagulation sludge blended with saw dust: Physiochemical characterization and kinetic study, Environ. Challenges. 5 (2021) 1–10. https://doi.org/10.1016/j.envc.2021.100288. DOI: https://doi.org/10.1016/j.envc.2021.100288
- S.F. Aquino, C.A.L. Chernicharo, E. Foresti, M. de L.F. dos Santos, L.O. Monteggia, Metodologias para determinação da atividade metanogênica específica (AME) em lodos anaeróbios, Eng. Sanit. e Ambient. 12 (2007) 192–201. https://doi.org/10.1590/S1413-41522007000200010. DOI: https://doi.org/10.1590/S1413-41522007000200010
- M.G. Noelia, Degradación de contaminantes emergentes mediante TiO2 inmovilizado e irradiación solar, Universidad de Almería, 2015.
- J. Diaz-Angulo, A. Arce-Sarria, M. Mueses, A. Hernandez-Ramirez, F. Machuca-Martinez, Analysis of two dye-sensitized methods for improving the sunlight absorption of TiO2 using CPC photoreactor at pilot scale, Mater. Sci. Semicond. Process. 103 (2019) 104640. https://doi.org/10.1016/j.mssp.2019.104640. DOI: https://doi.org/10.1016/j.mssp.2019.104640
- S. McMichael, M. Waso, B. Reyneke, W. Khan, J.A. Byrne, P. Fernandez-Ibanez, Electrochemically assisted photocatalysis for the disinfection of rainwater under solar irradiation, Appl. Catal. B Environ. 281 (2021) 119485. https://doi.org/10.1016/j.apcatb.2020.119485. DOI: https://doi.org/10.1016/j.apcatb.2020.119485
- Q. Wei, Y. Yang, J. Hou, H. Liu, F. Cao, L. Zhao, Direct solar photocatalytic hydrogen generation with CPC photoreactors: System development, Sol. Energy. 153 (2017) 215–223. https://doi.org/10.1016/j.solener.2017.05.064. DOI: https://doi.org/10.1016/j.solener.2017.05.064
- N. Vela, M. Calín, M.J. Yáñez-Gascón, I. Garrido, G. Pérez-Lucas, J. Fenoll, S. Navarro, Photocatalytic oxidation of six pesticides listed as endocrine disruptor chemicals from wastewater using two different TiO2 samples at pilot plant scale under sunlight irradiation, J. Photochem. Photobiol. A Chem. 353 (2018) 271–278. https://doi.org/10.1016/j.jphotochem.2017.11.040. DOI: https://doi.org/10.1016/j.jphotochem.2017.11.040
- M. Hassan, Y. Zhao, B. Xie, Employing TiO 2 photocatalysis to deal with landfill leachate: Current status and development, Chem. Eng. J. 285 (2016) 264–275. https://doi.org/10.1016/j.cej.2015.09.093. DOI: https://doi.org/10.1016/j.cej.2015.09.093
- D. Fu, Y. Huang, X. Zhang, T.A. Kurniawan, T. Ouyang, Uncovering potentials of integrated TiO2(B) nanosheets and H2O2 for removal of tetracycline from aqueous solution, J. Mol. Liq. 248 (2017) 112–120. https://doi.org/10.1016/j.molliq.2017.10.020. DOI: https://doi.org/10.1016/j.molliq.2017.10.020
- H. Lachheb, C. Guillard, H. Lassoued, M. Haddaji, M. Rajah, A. Houas, Photochemical oxidation of styrene in acetonitrile solution in presence of H2O2, TiO2 /H2O2 and ZnO/H2O2, J. Photochem. Photobiol. A Chem. 346 (2017) 462–469. https://doi.org/10.1016/j.jphotochem.2017.06.026. DOI: https://doi.org/10.1016/j.jphotochem.2017.06.026
- D. Camacho-Muñoz, A.-S. Fervers, C.J. Pestana, C. Edwards, L.A. Lawton, Degradation of microcystin-LR and cylindrospermopsin by continuous flow UV-A photocatalysis over immobilised TiO2, J. Environ. Manage. 276 (2020) 111368. https://doi.org/10.1016/j.jenvman.2020.111368. DOI: https://doi.org/10.1016/j.jenvman.2020.111368
- M.R. Al-Mamun, S. Kader, M.S. Islam, M.Z.H. Khan, Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review, J. Environ. Chem. Eng. 7 (2019) 103248. https://doi.org/10.1016/j.jece.2019.103248. DOI: https://doi.org/10.1016/j.jece.2019.103248
- E.M.R. Rocha, J.P. Vilar, A. Fonseca, I. Saraiva, R.A.R. Boaventura, Landfill leachate treatment by solar-driven AOPs/H2O2, Sol. Energy. 85 (2011) 46–56. https://doi.org/10.1016/j.solener.2010.11.001. DOI: https://doi.org/10.1016/j.solener.2010.11.001
- L.M. Losada, E.J.L. Castillo, E.A.O. Restrepo, E.A.S. Galvis, R.A.T. Palma, Tratamiento de aguas contaminadas con colorantes mediante fotocatálisis con TiO2 usando luz artificial y solar, Prod. + Limpia. 12 (2017). DOI: https://doi.org/10.22507/pml.v12n2a4
- R.X. de S. Furtado, C.A. Sabatini, M. Zaiat, E.B. Azevedo, Perfluorooctane sulfonic acid (PFOS) degradation by optimized heterogeneous photocatalysis (TiO2/UV) using the response surface methodology (RSM), J. Water Process Eng. 41 (2021) 101986. https://doi.org/10.1016/j.jwpe.2021.101986. DOI: https://doi.org/10.1016/j.jwpe.2021.101986
- S. Archin, S.H. Sharifi, G. Asadpour, Optimization and modeling of simultaneous ultrasound-assisted adsorption of binary dyes using activated carbon from tobacco residues: Response surface methodology, J. Clean. Prod. 239 (2019) 118136. https://doi.org/10.1016/j.jclepro.2019.118136. DOI: https://doi.org/10.1016/j.jclepro.2019.118136
- Y. Zegzouti, A. Boutafda, L. El Fels, M. El Hadek, A. Lebrihi, F. Bekkaoui, M. Hafidi, Quality and quantity of leachate with different ages and operations in semi-arid climate, Desalin. WATER Treat. 152 (2019) 174–184. https://doi.org/10.5004/dwt.2019.24017. DOI: https://doi.org/10.5004/dwt.2019.24017
- C.M. Moody, T.G. Townsend, A comparison of landfill leachates based on waste composition, Waste Manag. 63 (2017) 267–274. https://doi.org/10.1016/j.wasman.2016.09.020. DOI: https://doi.org/10.1016/j.wasman.2016.09.020
- M. Ghahrchi, A. Rezaee, Electro-catalytic ozonation for improving the biodegradability of mature landfill leachate, J. Environ. Manage. 254 (2020) 109811. https://doi.org/10.1016/j.jenvman.2019.109811. DOI: https://doi.org/10.1016/j.jenvman.2019.109811
- Y.-C. Chou, S.-L. Lo, J. Kuo, C.-J. Yeh, Microwave-enhanced persulfate oxidation to treat mature landfill leachate, J. Hazard. Mater. 284 (2015) 83–91. https://doi.org/10.1016/j.jhazmat.2014.10.043. DOI: https://doi.org/10.1016/j.jhazmat.2014.10.043
- B.K. Mavakala, S. Le Faucheur, C.K. Mulaji, A. Laffite, N. Devarajan, E.M. Biey, G. Giuliani, J.-P. Otamonga, P. Kabatusuila, P.T. Mpiana, J. Poté, Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests, Waste Manag. 55 (2016) 238–248. https://doi.org/10.1016/j.wasman.2016.04.028. DOI: https://doi.org/10.1016/j.wasman.2016.04.028
- M. Nakasima-López, P. Taboada-González, Q. Aguilar-Virgen, N. Velázquez-Limón, Adaptación de Inóculos Durante el Arranque de la Digestión Anaerobia con Residuos Sólidos Orgánicos, Inf. Tecnológica. 28 (2017) 199–208. https://doi.org/10.4067/S0718-07642017000100020. DOI: https://doi.org/10.4067/S0718-07642017000100020
- G. Ferrara Giner, A. Ramírez, Análisis de la sedimentabilidad de los lodos biológicos producidos en un RCS durante la desnitrificación de un efluente de un biorreactor de crecimiento adherido, Rev. La Fac. Ing. Univ. Cent. Venez. 28 (2013) 37–44.
- J.L. Ortiz Carrillo, J.A. Rodríguez Chona, Á.M. Cajiao Pedraza, J.I. Maldona Maldonado, Estudio cinético de bacterias metanogénicas a diferentes temperaturas, BistuaRevista La Fac. Ciencias Básicas. (2016) 39–48.
- L.B. Ho, D. Becerra Moreno, V. Ángulo, L. Salazar, Biodegradabilidad de aguas residuales agroindustriales fototratadas mediante catálisis heterogénea, Afinidad. 68 (2011).
- . K Mojiri, Assessment of various tropical municipal landfill leachate characteristics and treatment opportunities, 2015.
- S.M.A. Abuabdou, W. Ahmad, N.C. Aun, M.J.K. Bashir, A review of anaerobic membrane bioreactors (AnMBR) for the treatment of highly contaminated landfill leachate and biogas production: Effectiveness, limitations and future perspectives, J. Clean. Prod. 255 (2020) 120215. https://doi.org/10.1016/j.jclepro.2020.120215. DOI: https://doi.org/10.1016/j.jclepro.2020.120215
- L. Wu, Z. Yan, S. Huang, J. Li, B. Su, C. Wang, Y. Peng, Rapid start-up and stable maintenance of partial nitrification–anaerobic ammonium oxidation treatment of landfill leachate at low temperatures, Environ. Res. 191 (2020) 110131. https://doi.org/10.1016/j.envres.2020.110131. DOI: https://doi.org/10.1016/j.envres.2020.110131
- O.N. Ağdağ, D.T. Sponza, Anaerobic/aerobic treatment of municipal landfill leachate in sequential two-stage up-flow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) systems, Process Biochem. 40 (2005) 895–902. https://doi.org/10.1016/j.procbio.2004.02.021. DOI: https://doi.org/10.1016/j.procbio.2004.02.021
- S. Ismail, M. Nasr, E. Abdelrazek, H.M. Awad, S. Zhaof, F. Meng, A. Tawfik, Techno-economic feasibility of energy-saving self-aerated sponge tower combined with up-flow anaerobic sludge blanket reactor for treatment of hazardous landfill leachate, J. Water Process Eng. 37 (2020) 101415. https://doi.org/10.1016/j.jwpe.2020.101415. DOI: https://doi.org/10.1016/j.jwpe.2020.101415
- S. Chelliapan, N. Arumugam, M.F. Md. Din, H. Kamyab, S.S. Ebrahimi, Anaerobic treatment of municipal solid waste landfill leachate, in: Bioreactors, Elsevier, 2020: pp. 175–193. https://doi.org/10.1016/B978-0-12-821264-6.00011-5. DOI: https://doi.org/10.1016/B978-0-12-821264-6.00011-5
- L.F. Garcés Giraldo, E.A. Mejía Franco, J.J. Santamaría Arango, Fotocatálisis como alternativa para el tratamiento de aguas residuales, Rev. Lasallista Investig. 1 (2004) 83–92.
- D.R. Giraldo Valentín, Eficiencia del proceso de fotocatálisis heterogénea con tio2 y h2o2 en la reducción de dbo5 y dqo de los lixiviados del botadero la mejorada el tambo Huancayo, Repos. Inst. - UAP. (2016).
- S.H. Valencia, J.M. Marín, G.M. Restrepo, Efecto del pH en la Degradación Fotocatalítica de Materia Orgánica Natural, Inf. Tecnológica. 22 (2011) 57–66. https://doi.org/10.4067/S0718-07642011000500008. DOI: https://doi.org/10.4067/S0718-07642011000500008
- G. Llanes, Y. Carolay, M. Benavides, A. Consuelo, Fotocatálisis heterogénea con TiO2 para el tratamiento de desechos líquidos con presencia del indicador verde de bromocresol, Rev. Ing. 10 (2011) 79–88.
- D. Lu, M. Yang, P. Fang, C. Li, L. Jiang, Enhanced photocatalytic degradation of aqueous phenol and Cr(VI) over visible-light-driven Tb x O y loaded TiO 2 -oriented nanosheets, Appl. Surf. Sci. 399 (2017) 167–184. https://doi.org/10.1016/j.apsusc.2016.12.077. DOI: https://doi.org/10.1016/j.apsusc.2016.12.077
- D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu, R. Ruan, Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review, J. Clean. Prod. (2020) 121725. https://doi.org/10.1016/j.jclepro.2020.121725. DOI: https://doi.org/10.1016/j.jclepro.2020.121725
- R. Arshad, T.H. Bokhari, T. Javed, I.A. Bhatti, S. Rasheed, M. Iqbal, A. Nazir, S. Naz, M.I. Khan, M.K.K. Khosa, M. Iqbal, M. Zia-ur-Rehman, Degradation product distribution of Reactive Red-147 dye treated by UV/H2O2/TiO2 advanced oxidation process, J. Mater. Res. Technol. 9 (2020) 3168–3178. https://doi.org/10.1016/j.jmrt.2020.01.062. DOI: https://doi.org/10.1016/j.jmrt.2020.01.062
- O.N.E.H. Kaabeche, R. Zouaghi, S. Boukhedoua, S. Bendjabeur, T. Sehili, A Comparative Study on Photocatalytic Degradation of Pyridinium – Based Ionic Liquid by TiO2 and ZnO in Aqueous Solution, Int. J. Chem. React. Eng. 17 (2019). https://doi.org/10.1515/ijcre-2018-0253. DOI: https://doi.org/10.1515/ijcre-2018-0253
- P. Torres Lozada, L.E. Barba Ho, C. Ojeda, J. Martínez, Y. Castaño, Influencia de la edad de lixiviados sobre su composición físico-química y su potencial de toxicidad, Rev. U.D.C.A Actual. Divulg. Científica. 17 (2014) 245–255. DOI: https://doi.org/10.31910/rudca.v17.n1.2014.960
- M.N. Chong, A.K. Sharma, S. Burn, C.P. Saint, Feasibility study on the application of advanced oxidation technologies for decentralised wastewater treatment, J. Clean. Prod. 35 (2012) 230–238. https://doi.org/10.1016/j.jclepro.2012.06.003. DOI: https://doi.org/10.1016/j.jclepro.2012.06.003
- M. Hassan, X. Wang, F. Wang, D. Wu, A. Hussain, B. Xie, Coupling ARB-based biological and photochemical (UV/TiO2 and UV/S2O82−) techniques to deal with sanitary landfill leachate, Waste Manag. 63 (2017) 292–298. https://doi.org/10.1016/j.wasman.2016.09.003. DOI: https://doi.org/10.1016/j.wasman.2016.09.003
- L.A. Castillo-Suárez, V. Lugo-Lugo, I. Linares-Hernández, V. Martínez-Miranda, M. Esparza-Soto, M. de los Á. Mier-Quiroga, Biodegradability index enhancement of landfill leachates using a Solar Galvanic-Fenton and Galvanic-Fenton system coupled to an anaerobic–aerobic bioreactor, Sol. Energy. 188 (2019) 989–1001. https://doi.org/10.1016/j.solener.2019.07.010. DOI: https://doi.org/10.1016/j.solener.2019.07.010