A hybrid system bases on silica-alumina and Keggin heteropolyacids as catalyst in the suitable 2-(2-furyl)-chromones and chromanones synthesis

A hybrid system bases on silica-alumina and Keggin heteropolyacids as catalyst in the suitable 2-(2-furyl)-chromones and chromanones synthesis

Contenido principal del artículo

V. Palermo
D. Ruiz
A. Sathicq
P. Vázquez
G. Romanelli


Molybdophosphoric acid/silica-alumina composites are synthesized a through a process described, in which the heteropolyacid was impregnated on different silica-aluminas, obtained by sol-gel. Three different techniques were used to prepare the samples. The catalysts were prepared by incipient wetness impregnation and different thermal treatments were applied. The hybrid systems were characterized by using SBET, DRX, XRD and acidity measurements.

 The catalytic activity of these materials was tested in the solvent-free cyclization of 1-(2-hydroxyphenyl)-3-(2-furyl)-1,3-propanedione to 2-(2-furyl)-chromones. The transformation gives very good yields of product, free of secondary products. Environmental benign procedure, and easy catalyst separation, is relevant features of this methodology. In this way the catalyst can be used and reused six cycles without loss of catalytic activity. The most active catalyst was also used in the solvent-free cyclization of 1-(2-hydroxyphenyl)-3-(2-furyl)-2-propen-1-one and the methodology can be extended to the synthesis of other 2-(2-(furyl)-chromones and chromanones. The green context for this new procedure was confirmed by greenmetrics parameters.

Palabras clave:


Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Climent, M. J.; Corma, A.; Iborra, S. Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chem. 2011, 13 (3), 520-540.

Bozell, J. J.; Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12 (4), 539-554.

A. Escobar, A. Sathicq, L. Pizzio, M. Blanco, G. Romanelli. Biomass valorization derivatives: Clean esterification of 2-furoic acid using tungstophosphoric acid/zirconia composites as recyclable catalyst. Process Safety and Environmental Protection, 2015, 98, 176-186.

R, Sheldon E Factors, Green Chemistry and Catalysis: An Odyssey. Chemical Communications, 2008, 39(29), 3352-3365.

G. Romanelli, J. Autino. Recent applications of heteropolyacids and related compounds in heterocycles synthesis. Minireview in Organic Chemistry, 2009, 6, 359-366.

Jarosław Lewkowski. Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives, ARKIVOC, 2001, 1, 17-54.

R. Frenzel, G. Romanelli, L. Pizzio. Novel catalyst based on mono- and di-vanadium substituted Keggin polyoxometalate incorporated in poly (acrylic acid-co-acrylamide) polymer for the oxidation of sulfides. Molecular Catalysis, 2018, 457, 8-16.

Omar Portilla-Zúñiga, Ángel Sathicq, José Martínez, Hugo Rojas, Eduardo De Geronimo, Rafael Luque, Gustavo P. Romanelli. Novel bifunctional mesoporous catalysts based on Preyssler heteropolyacids for green pyrrole derivative synthesis. Catalysts, 2018, 8, 419-439.

O. Cuervo, H. Rojas, H. Santos, T. Ramalho, G. Romanelli, J. Martínez. Etherification of hydroxymethylfurfural with Preyssler heteropolyacids immobilized on magnetic composites. ChemistrySelect, 2018, 3, 5526-5533.

Morales, D.M., Frenzel, R.A., Romanelli, G.P., Pizzio, L.R. Synthesis and characterization of nanoparticulate silica with organized multimodal porous structure impregnated with 12-phosphotungstic acid for its use in heterogeneous catalysis. Molecular Catalysis, 2018,. In press, https://doi.org/10.1016/j.mcat.2018.10.005

O. Portilla, A. Sathicq, J. Martínez, S. Fernandes, T. Rezende, G. Romanelli. Synthesis of Biginelli adducts using a Preyssler heteropolyacid in silica matrix from biomass building block. Sustainable Chemistry and Pharmacy, 2018, 10, 50-55.

L. Gutierrez, E. Nope, H. Rojas, A. Sathicq, G. Romanelli, J. Martínez. New application of decaniobate salt as basic solid in the synthesis of 4H-pyrans by microwave assisted multicomponent reactions. Research on Chemical Intermediates, 2018, 44, 5559-5568.

M. E. Perez, D. Ruiz, J. Autino, M. Blanco, L. Pizzio, G. Romanelli. Mesoporous titania/tungstophosphoric acid composites: suitable synthesis of flavones. Journal of Porous Materials, 2013, 20, 1433-1440.

Rackova, L.; Firakova, S.; Kostalova, D.; Stefek, M.; Sturdik, E.; Majekova, M. Oxidation of liposomal membrane suppressed by flavonoids: Quantitative structure–activity relationship. Bioorg Med Chem 2005, 13, 6477-6484

Hanaa A. Tawfik, Ewies F. Ewies, Wageeh S. El-Hamouly. Synthesis of Chromones and their Applications during the Last Ten Years, in Ewies F Ewies et al. IJRPC, 2014, 4(4), 1046-1085.

Menezes, Jlio Csar L.; Vaz, Luana Beatriz A.; De Vieira, Paula Melo Abreu; Fonseca, Ktia Da Silva; Carneiro, Cludia Martins; Taylor, Jason G. Synthesis and Anti-Trypanosoma cruzi Activity of Diaryldiazepines. Molecules, 2015, 20, 43-51.

Ollis, W.D.; Weight, D. The synthesis of 3-substituted chromones by rearrangement of o-acyloxyacetophenones. Journal of the Chemical Society, 1952, 3826-3830.

Nair, S.B.; Wadodkar, K.N. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, 1982, 21 (6), 573-574.

Hirao, Ichiro; Yamaguchi, Masahiko; Hamada, Michiyuki; A Convenient Synthesis of 2- and 2,3-Substituted 4H-Chromen-4-ones. Synthesis, 1984, 12, 1076-1078.

Ravishankar , D.; Watson, K.A.; Greco, F., Osborn, H.M.I. Novel synthesised flavone derivatives provide significant insight into the structural features required for enhanced anti-proliferative activity. RCS Advances. 2016, 6, 64544-64556.

Bennardi, Daniel O.; Romanelli, Gustavo P.; Jios, Jorge L.; Vazquez, Patricia G.; Caceres, Carmen V.; Autino, Juan C. Synthesis of substituted flavones and arylchromones using P and Si Keggin heteropolyacids as catalysts. Heterocyclic Communications, 2007, 13, 77-81.

Gabriel J. Sagreraa, Gustavo A. Seoane. Microwave Accelerated Solvent-Free Synthesis of Flavanones. J. Braz. Chem. Soc., 2005, 16, 851-856.

Muller, Brian M.; Litberg, Theodore J.; Yocum, Reid A.; Pniewski, Chanté A.; Adler, Marc J. Extended Aromatic and Heteroaromatic Ring Systems in the Chalcone–Flavanone Molecular Switch Scaffold. Journal of Organic Chemistry, 2016, 81, 5775-5781.

Otsuka, Y.; Synthesis of 2-α-Furyl-chromanone and Its Derivatives. Nippon Kagaku Kaishi, 1944, 65, 539-541.

Rao, V. Kameswara; Rao, M. Sudershan; Kumar, Anil; Ytterbium(III) triflate: An efficient and simple catalyst for isomerization of 2′-hydroxychalcone and 2′-aminochalcones in ionic liquid, Journal of Heterocyclic Chemistry; 2011, 48, 1356-1360.

Kumar, Dalip; Patel, Gautam; Mishra, Braja G.; Varma, Rajender S. Eco-friendly polyethylene glycol promoted Michael addition reactions of α,β-unsaturated carbonyl compounds. Tetrahedron Letters, 2008, 49, 6974-6976.

Kumar, Dalip; Patel, Gautam; Kumar, Anil; Roy, Ram K. Ionic liquid catalyzed expeditious synthesis of 2-aryl-2,3-dihydroquinolin-4(1H)-ones and 2-aryl-2,3-dihydro-4H-chromen-4-ones under microwave irradiation. Journal of Heterocyclic Chemistry, 2009, 46, 791-795.

Ganguly, Nemai C.; Chandra, Sumanta; Barik, Sujoy Kumar. Sodium Perborate Tetrahydrate–Mediated Transformations of 2′-Hydroxychalcones to Flavanones, Flavones, and 3′, 5′-Diiodoflavone Under Mild, Environmentally Friendly Conditions. Synthetic Communications, 2013, 43, 1351-1361.

Yang, Guangfu; Jiang, Xiaohua; Yang, Huazheng. Development of novel pesticides based on phytoalexins: Part 2. Quantitative structure–activity relationships of 2-heteroaryl-4-chromanone derivatives. Pest Management Science, 2002, 58, 1063-1067.

P. Kulkarni, P. Wagh, P. Zubaidha. An Improved and Eco-Friendly Method for the Synthesis of Flavanone by the Cyclization of 2’-Hydroxy Chalcone using Methane Sulphonic Acid as Catalyst. Chemistry Journal, 2012, 2, 106-110.

G. Romanelli, P. Vázquez, L. Pizzio, N. Quaranta , J. Autino , M. Blanco, C. Cáceres. Phenol tetrahydropyranylation catalyzed by silica-alumina supported heteropolyacids with Keggin structure. Applied Catalysis A: General, 2004, 261, 163–170.

Citado por: