Skip to main navigation menu Skip to main content Skip to site footer

Effect of a transversal channel on the vortex-antivortex state in a superconducting film

Abstract

In this work, the resistive state of a mesoscopic superconducting sample in presence of an external transport electric current, Ja, and at zero magnetic field was studied. A non-centered channel of depleted superconductivity (of width m and at lower critical temperature Tc) is positioned at a distance d of the center of the sample. We vary the width a of the metallic contact in which the external current is applied. We study the superconducting electronic density, the vortex-antivortex velocity, and the annihilation rates of the supercurrent for several widths of the metallics contacts and position of the channel. Our investigation show that critical currents and the velocity of the v − Av of the studied system depend strongly on the size of the contact and of the position of the channel in the sample.

Keywords

Ginzburg-Landau, Kinematic vortex, Mesoscopics, Superconductor

PDF (Español)

References

  1. A. G. Sivakov, A. M. Glukhov, A. N. Omelyan- chouk, Y. Koval, P. Muller, and A. V. Ustinov, Phys. Rev. Lett., no. 91, p. 267001, 2003. DOI: https://doi.org/10.1103/PhysRevLett.91.267001
  2. A. Andronov, I. Gordion, V. Kurin, I. Nefedov, and I. Shereshevsky, Physica C, no. 213, p. 193, 1993. DOI: https://doi.org/10.1016/0921-4534(93)90777-N
  3. W. J. Skocpol, M. R. Beasley, and M. Tinkham, J. Appl. Phys., no. 45, p. 4054, 1974. DOI: https://doi.org/10.1063/1.1663912
  4. J. Barba-Ortega, E. Sardella, and R. Zadorosny, Phys. Lett. A., no. 382, p. 215, 2018. DOI: https://doi.org/10.1016/j.physleta.2017.11.010
  5. G. Berdiyorov, M. V. Miloševic ́, and F. M. Peeters, Phys. Rev. B, no. 79, p. 184506, 2009. DOI: https://doi.org/10.1103/PhysRevB.79.184506
  6. G. Berdiyorov, M. V. Miloševic ́, and F. M. Peeters, Phys. Rev. B, no. 80, p. p. 214509, 2009. DOI: https://doi.org/10.1103/PhysRevB.80.214509
  7. G. Berdiyorov, K. Harrabi, F. Oktasendra, K. Gasmi, A. I. Mansour, J. P. Maneval, and F. M. Peeters, Phys. Rev. B, no. 90, p. 054506, 2014. DOI: https://doi.org/10.1103/PhysRevB.90.054506
  8. G. Berdiyorov, K. Harrabi, J. P. Maneval, F. M. Peeters, Supercond. Sci. Technol., no. 28, p. 025004, 2015.
  9. G. J. Dolan and L. D. Jackel, Phys. Rev. Lett. , no. 39, 1628, 1977. DOI: https://doi.org/10.1103/PhysRevLett.39.1628
  10. R.B.Laibowitz,A.N.Broers,J.T.C.Yeh,and J. M. Viggiano, App. Phys. Lett., no. 35, p. 891, 1979. DOI: https://doi.org/10.1063/1.91003
  11. G. Berdiyorov, A. R. de C. Romaguera, M. V. Miloševic ́, M. M. Doria, L. Covaci, and F. M. Peeters, Eur. Phys. J. B, no. 85, p. 130 , 2012. DOI: https://doi.org/10.1140/epjb/e2012-30013-7
  12. E. Sardella, P. N. Lisboa-Filho, C. C. S. Silva, L. R. E. Cabral and W. A. Ortiz, Phys. Rev. B, no. 80, p. 012506, 2009. DOI: https://doi.org/10.1103/PhysRevB.80.012506
  13. E. C. S. Duarte, E. Sardella, W. A. Ortiz and R. Zadorosny, J. Phys. Condens. Matter., no. 29, p. 405605, 2017. DOI: https://doi.org/10.1088/1361-648X/aa81e6
  14. L. R. Cadorim, A. de Oliveira Junior, E. Sardella, Sci. Rep., no. 10, p. 18662, 2020. DOI: https://doi.org/10.1038/s41598-020-75748-5
  15. V. S. Souto E. C. S. Duarte, E. Sardella, R. Zadorosny, Phys. Lett. A., no. 419, p. 127742, 2021. DOI: https://doi.org/10.1016/j.physleta.2021.127742
  16. G. Berdiyorov, K. Harrabi, J. P. Maneval, F. M. Peeters, Supercond. Sci. Technol., no. 28, 025004, 2015. DOI: https://doi.org/10.1088/0953-2048/28/2/025004
  17. A. Benfenati, A. Samoilenka, E. Babaev, Phys. Rev. B, no. 103, p. 144512, 2021. DOI: https://doi.org/10.1103/PhysRevB.103.144512
  18. J. Roa, Revista Ciencia en Desarrollo, no. p. 9, 51, 2018. DOI: https://doi.org/10.19053/01217488.v9.n1.2018.5976
  19. E. F. Galindez, J. A. Rojas, D. Sachez, D. A. Landinez, J. Roa, Revista Ciencia en Desarrollo, no. 13, p. 1, 2022.
  20. J. Barba-Ortega, E. Sardella, J. A. Aguiar, Supercond. Sci. Technol., no. 24, p. 015001, 2011. DOI: https://doi.org/10.1088/0953-2048/24/1/015001
  21. J. Barba-Ortega, H. Achic, M. R. Joya, Physica C , no. 561, p. 9, 2019. DOI: https://doi.org/10.1016/j.physc.2019.03.001
  22. J. Barba-Ortega, M. R. Joya, E. Sardella, Eur. Phys. J. B, no. 92, p. 143, 2019. DOI: https://doi.org/10.1140/epjb/e2019-100082-y
  23. Q. Du, M.D. Gunzburger, Physica D , no. 69, 215, 1993. DOI: https://doi.org/10.1016/0167-2789(93)90089-J
  24. S. J. Chapman, Q. Du, M. S. Gunzburger, Z. Angnew. Math. Phys., no. 47, p. 410, 1996. DOI: https://doi.org/10.1007/BF00916647
  25. Q. Du. M. D. Gunzburger, J. S. Peterson, Phys. Rev. B, no. 51, p. 16194, 1999. DOI: https://doi.org/10.1103/PhysRevB.51.16194
  26. L. Kramer and R. J. Watts-Tobin, Phys. Rev. Lett., no. 40, p. 1041, 1978. DOI: https://doi.org/10.1103/PhysRevLett.40.1041
  27. J. Watts-Tobin, Y. Krähenbühl, and L. Kramer, J. Low. Temp. Phys., no. 42, p. 459, 1981. DOI: https://doi.org/10.1007/BF00117427
  28. D. Y. Vodolazov, F. M. Peeters, M. Morelle, and V. V. Moshchalkov, Phys. Rev. B, no. 71, p. 184502, 2005. DOI: https://doi.org/10.1103/PhysRevB.71.184502
  29. L. Embon, Y. Anahory, Z. L. Jelic, E. O. Lach- man, Y. Myasoedov, M. E. Huber, G. P. Mikitik, A. V. Silhanek, M. V. Milosevic, A. Gurevich and E. Zeldov, Nature Communication, no. 8, p. 85, 2017. DOI: https://doi.org/10.1038/s41467-017-00089-3
  30. Z..L.Jelic,M.V.MilosevicandA.V.Silhanek Sci. Rep., no. 6, p. 35687, 2016. DOI: https://doi.org/10.1038/srep35687
  31. W. D. Gropp, H. G. Kaper, G. K. Leaf, D. M.
  32. Levine, M. Palumbo, and V. M. Vinokur, J. Comput. Phys., no. 123, p. 254, 1996. DOI: https://doi.org/10.1006/jcph.1996.0022
  33. G.Buscaglia,C.Bolech,andC.LopezConnec- tivity and Superconductivity, ed. J. Berger and J. Rubinstein (Heidelberg: Springer), 2000.
  34. J. Barba-Ortega, M. Rincon-Joya and J. Faundez-Chaura, Revista Ingenio, no. 15, p. 1, 31, 2018. DOI: https://doi.org/10.22463/2011642X.3122

Downloads

Download data is not yet available.