Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Función de Masa para una distribución fractal de materia usando la teoría de Excursion Set

Resumen

Con base en los fundamentos de la teoría excursion set, se desarrolla una expresión para la función de
masa en una distribución fractal de materia. Se encuentra el espectro de potencias para una distribución
fractal de materia mediante la determinación de la varianza para una distribución de galaxias caracterizada
por la dimensión fractal masa-radio. La función de masa encontrada exhibe un buen comportamiento en
comparación con la función de masa reportada en la literatura, con una dependencia de dos parámetros; el
parámetro β para una barrera móvil y la dimensión fractal D de la distribución de materia

Palabras clave

Función de masa, teoría excursion set, fractal


Citas

  1. J. Peacock, Cosmological physics. Cambridge University
  2. Press, 1999. [Online]. Available: http://books.google.com.
  3. co/books?id=t8O-yylU0j0C
  4. V. Martínez and E. Saar, Statistics of the galaxy distribu-
  5. tion. Chapman & Hall/CRC, 2002. [Online]. Available:
  6. http://books.google.com.co/books?id=f-l9bB-7AQMC
  7. M. Longair, Galaxy formation, ser. Astronomy and
  8. astrophysics library. Springer, 2008. [Online]. Available:
  9. http://books.google.com.co/books?id=e-wJHSBOuZAC
  10. R. Wald, General Relativity. University of Chicago
  11. Press, 2010. [Online]. Available: http://books.google.com.
  12. co/books?id=9S-hzg6-moYC
  13. P. V. Gruji´c, “The concept of a hierarchical cosmos,” Pu-
  14. blications de l’Observatoire Astronomique de Beograd,
  15. vol. 75, pp. 257–262, Oct. 2003.
  16. A. Gabrielli, Sylos, M. Joyce, and L. Pietronero, Statistical
  17. Physics for Cosmic Structures. Springer Verlag, 2005.
  18. E. Komatsu, J. Dunkley, M. R. Nolta, C. L. Bennett,
  19. B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. Limon,
  20. L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut,
  21. S. S. Meyer, G. S. Tucker, J. L. Weiland, E. Wollack, and
  22. E. L. Wright, “Five-Year Wilkinson Microwave Aniso-
  23. tropy Probe Observations: Cosmological Interpretation,”
  24. ApJS, vol. 180, pp. 330–376, Feb. 2009.
  25. F. Caruso and V. Oguri, “The Cosmic Microwave Back-
  26. ground Spectrum and an Upper Limit for Fractal Space
  27. Dimensionality,” ApJ, vol. 694, pp. 151–153, Mar. 2009.
  28. N. Kobayashi, Y. Yamazaki, H. Kuninaka, M. Katori,
  29. M. Matsushita, S. Matsushita, and L.-Y. Chiang, “Fractal
  30. Structure of Isothermal Lines and Loops on the Cosmic
  31. Microwave Background,” Journal of the Physical Society
  32. of Japan, vol. 80, no. 7, p. 074003, Jul. 2011.
  33. G. Lemaître, “Expansion of the universe, A homogeneo-
  34. us universe of constant mass and increasing radius ac-
  35. counting for the radial velocity of extra-galactic nebulae,”
  36. MNRAS, vol. 91, pp. 483–490, Mar. 1931.
  37. H. P. Robertson, “Kinematics and World-Structure,” ApJ,
  38. vol. 82, p. 284, Nov. 1935.
  39. A. G. Walker, “On the formal comparison of Milne’s ki-
  40. nematical system with the systems of general relativity,”
  41. MNRAS, vol. 95, pp. 263–269, Jan. 1935.
  42. A. Friedmann, “On the Curvature of Space,” General Re-
  43. lativity and Gravitation, vol. 31, p. 1991, Dec. 1999.
  44. A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti,
  45. A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J.
  46. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M.
  47. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and
  48. J. Tonry, “Observational evidence from supernovae for
  49. an accelerating universe and a cosmological constant,”
  50. The Astronomical Journal, vol. 116, no. 3, p. 1009, 1998.
  51. [Online]. Available: http://stacks.iop.org/1538-3881/116/
  52. i=3/a=1009
  53. S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop,
  54. P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar,
  55. D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C.
  56. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby,
  57. C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-
  58. Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filip-
  59. penko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M.
  60. Newberg, W. J. Couch, and T. S. C. Project, “Measure-
  61. ments of Ω and Λ from 42 High-Redshift Supernovae,”
  62. ApJ, vol. 517, pp. 565–586, Jun. 1999.
  63. M. Hamuy, S. C. Trager, P. A. Pinto, M. M. Phillips, R. A.
  64. Schommer, V. Ivanov, and N. B. Suntzeff, “A Search for
  65. Environmental Effects on Type IA Supernovae,” AJ, vol.
  66. , pp. 1479–1486, Sep. 2000.
  67. D. W. Hogg, D. J. Eisenstein, M. R. Blanton, N. A. Bah-
  68. call, J. Brinkmann, J. E. Gunn, and D. P. Schneider, “Cos-
  69. mic Homogeneity Demonstrated with Luminous Red Ga-
  70. laxies,” ApJ, vol. 624, pp. 54–58, May 2005.
  71. P. Sarkar, J. Yadav, B. Pandey, and S. Bharadwaj, “The
  72. scale of homogeneity of the galaxy distribution in SDSS
  73. DR6,” MNRAS, vol. 399, pp. L128–L131, Oct. 2009.
  74. S. Capozziello and S. Funkhouser, “Fractal Large-Scale
  75. Structure from a Stochastic Scaling Law Model,” Modern
  76. Physics Letters A, vol. 24, pp. 1743–1748, 2009.
  77. J. S. Bagla, J. Yadav, and T. R. Seshadri, “Fractal dimen-
  78. sions of a weakly clustered distribution and the scale of
  79. homogeneity,” MNRAS, vol. 390, pp. 829–838, Oct. 2008.
  80. M. Scrimgeour, T. Davis, C. Blake, J. B. James,
  81. G. Poole et al., “The WiggleZ Dark Energy Sur-
  82. vey: the transition to large-scale cosmic homogeneity,”
  83. Mon.Not.Roy.Astron.Soc., vol. 425, pp. 116–134, 2012.
  84. P. H. Coleman and L. Pietronero, “The fractal nature of
  85. the universe,” Physica A Statistical Mechanics and its
  86. Applications, vol. 185, pp. 45–55, Jun. 1992.
  87. S. Borgani, “The multifractal behaviour of hierarchical
  88. density distributions,” MNRAS, vol. 260, pp. 537–549,
  89. Feb. 1993.
  90. R. Durrer and F. Sylos Labini, “A fractal galaxy distri-
  91. bution in a homogeneous universe?” A&A, vol. 339, pp.
  92. L85–L88, Nov. 1998.
  93. J. Gaite, “The fractal distribution of haloes,” EPL
  94. (Europhysics Letters), vol. 71, no. 2, p. 332, 2005. [Online].
  95. Available: http://stacks.iop.org/0295-5075/71/i=2/a=332
  96. J. Gaite, “Halos and Voids in a Multifractal Model of
  97. Cosmic Structure,” ApJ, vol. 658, pp. 11–24, Mar. 2007.
  98. F. Sylos Labini, N. L. Vasilyev, L. Pietronero, and Y. V.
  99. Baryshev, “Absence of self-averaging and of homogeneity
  100. in the large-scale galaxy distribution,” EPL (Europhysics
  101. Letters), vol. 86, p. 49001, May 2009.
  102. A. O. Verevkin, Y. L. Bukhmastova, and Y. V. Baryshev,
  103. “The non-uniform distribution of galaxies from data of
  104. the SDSS DR7 survey,” Astronomy Reports, vol. 55, pp.
  105. –340, Apr. 2011.
  106. Y. Baryshev, “Field fractal cosmological model as an
  107. example of practical cosmology approach,” in Problems
  108. of Practical Cosmology, Volume 2, 2008, pp. 60–67.
  109. C. A. Chacón-Cardona and R. A. Casas-Miranda, “Millen-
  110. nium simulation dark matter haloes: multifractal and la-
  111. cunarity analysis and the transition to homogeneity,” MN-
  112. RAS, vol. 427, pp. 2613–2624, Dec. 2012.
  113. M. Joyce, F. Sylos Labini, A. Gabrielli, M. Montuori, and
  114. L. Pietronero, “Basic properties of galaxy clustering in the
  115. light of recent results from the Sloan Digital Sky Survey,”
  116. A&A, vol. 443, pp. 11–16, Nov. 2005.
  117. J. R. Mureika, “Fractal holography: a geometric re-
  118. interpretation of cosmological large scale structure,”
  119. JCAP, vol. 5, p. 21, May 2007.
  120. K. Enqvist, “Lemaitre Tolman Bondi model and acce-
  121. lerating expansion,” General Relativity and Gravitation,
  122. vol. 40, pp. 451–466, Feb. 2008.
  123. R. C. Tolman, “Effect of Inhomogeneity on Cosmological
  124. Models.” Proc Natl Acad Sci U S A, vol. 20, no. 3, pp. 169–
  125. , 1934. [Online]. Available: http://www.biomedsearch.
  126. com/nih/Effect-Inhomogeneity-Cosmological-Models/
  127. html
  128. H. Bondi, “Spherically symmetrical models in general
  129. relativity,” MNRAS, vol. 107, p. 410, 1947.
  130. W. B. Bonnor, “Evolution of inhomogeneous cosmologi-
  131. cal models,” MNRAS, vol. 167, pp. 55–62, Apr. 1974.
  132. F. Pompilio and M. Montuori, “An inhomogeneous fractal
  133. cosmological model,” Classical and Quantum Gravity,
  134. vol. 19, pp. 203–212, Jan. 2002.
  135. S. Viaggiu and M. Montuori, “How Large is the Contri-
  136. bution of Cosmic Web to Ωλ ? a Preliminary Study on a
  137. Novel Inhomogeneous Model,” International Journal of
  138. Modern Physics D, vol. 22, p. 50065, Aug. 2013.
  139. W. Rindler and D. Suson, “How to determine a Tolman-
  140. Bondi universe from ideal observable and theoretical rela-
  141. tions,” A&A, vol. 218, pp. 15–18, Jul. 1989.
  142. A. Mittal and D. Lohiya, “Fractal dust model of the univer-
  143. se based on Mandelbrot’s conditional cosmological princi-
  144. ple and general theory of relativity,” Fractals, vol. 11, pp.
  145. –153, 2003.
  146. N. P. Humphreys, D. R. Matravers, and R. Maartens,
  147. “Exact isotropic cosmologies with local fractal number
  148. counts,” Classical and Quantum Gravity, vol. 15, pp. 3041–
  149. , Oct. 1998.
  150. M.-N. Célérier, “Do we really see a cosmological constant
  151. in the supernovae data?” A&A, vol. 353, pp. 63–71, Jan.
  152. D. R. Matravers and N. P. Humphreys, “Matching Sphe-
  153. rical Dust Solutions to Construct Cosmological Models,”
  154. General Relativity and Gravitation, vol. 33, pp. 531–552,
  155. Mar. 2001.
  156. W. H. Press and P. Schechter, “Formation of Galaxies
  157. and Clusters of Galaxies by Self-Similar Gravitational
  158. Condensation,” ApJ, vol. 187, pp. 425–438, Feb. 1974.
  159. J. R. Bond, S. Cole, G. Efstathiou, and N. Kaiser, “Excur-
  160. sion set mass functions for hierarchical Gaussian fluctua-
  161. tions,” ApJ, vol. 379, pp. 440–460, Oct. 1991.
  162. C. Lacey and S. Cole, “Merger rates in hierarchical models
  163. of galaxy formation,” MNRAS, vol. 262, pp. 627–649, Jun.
  164. R. K. Sheth, “An excursion set model for the distribution
  165. of dark matter and dark matter haloes,” MNRAS, vol. 300,
  166. pp. 1057–1070, Nov. 1998.
  167. S. Chandrasekhar, “Stochastic problems in physics and
  168. astronomy,” Rev. Mod. Phys., vol. 15, pp. 1–89, Jan
  169. [Online]. Available: http://link.aps.org/doi/10.1103/
  170. RevModPhys.15.1
  171. R. K. Sheth and G. Tormen, “An excursion set model of
  172. hierarchical clustering: ellipsoidal collapse and the mo-
  173. ving barrier,” MNRAS, vol. 329, pp. 61–75, Jan. 2002.
  174. A. R. Zentner, “The Excursion Set Theory of Halo Mass
  175. Functions, Halo Clustering, and Halo Growth,” Internatio-
  176. nal Journal of Modern Physics D, vol. 16, pp. 763–815,
  177. J. Pan, Y. Wang, X. Chen, and L. F. A. Teodoro, “Effects
  178. of correlation between merging steps on the global halo
  179. formation,” MNRAS, vol. 389, pp. 461–468, Sep. 2008.
  180. J. Pan, “Fractional Brownian motion and the halo mass
  181. function,” MNRAS, vol. 374, pp. L6–L9, Jan. 2007.
  182. F. Sylos Labini and L. Amendola, “The Power Spectrum
  183. in a Strongly Inhomogenous Universe,” ApJ, vol. 468,
  184. p. L1, Sep. 1996.
  185. B. B. Mandelbrot, “Galaxy distributions and fractals.” As-
  186. trophysical Letters and Communications, vol. 36, pp. 1–5,
  187. Dec. 1997.
  188. V. V. Uchaikin, “If the Universe Were a Levy-Mandelbrot
  189. Fractal,” Gravitation and Cosmology, vol. 10, pp. 5–24,
  190. Jun. 2004.
  191. B. Mandelbrot, The fractal geometry of nature. W.H.
  192. Freeman, 1983. [Online]. Available: http://books.google.
  193. es/books?id=0R2LkE3N7-oC
  194. F. Sylos Labini, M. Montuori, and L. Pietronero, “Scale-
  195. invariance of galaxy clustering,” Phys. Rep., vol. 293, pp.
  196. –226, 1998.
  197. A. Jenkins, C. S. Frenk, S. D. M. White, J. M. Colberg,
  198. S. Cole, A. E. Evrard, H. M. P. Couchman, and N. Yoshida,
  199. “The mass function of dark matter haloes,” MNRAS, vol.
  200. , pp. 372–384, Feb. 2001.
  201. M. S. Warren, K. Abazajian, D. E. Holz, and L. Teodoro,
  202. “Precision Determination of the Mass Function of Dark
  203. Matter Halos,” ApJ, vol. 646, pp. 881–885, Aug. 2006.
  204. Z. L. Wen, J. L. Han, and F. S. Liu, “Mass function of rich
  205. galaxy clusters and its constraint on σ 8,” MNRAS, vol.
  206. , pp. 533–543, Sep. 2010.

Descargas

Los datos de descargas todavía no están disponibles.