Función de Masa para una distribución fractal de materia usando la teoría de Excursion Set
Resumen
Con base en los fundamentos de la teoría excursion set, se desarrolla una expresión para la función de
masa en una distribución fractal de materia. Se encuentra el espectro de potencias para una distribución
fractal de materia mediante la determinación de la varianza para una distribución de galaxias caracterizada
por la dimensión fractal masa-radio. La función de masa encontrada exhibe un buen comportamiento en
comparación con la función de masa reportada en la literatura, con una dependencia de dos parámetros; el
parámetro β para una barrera móvil y la dimensión fractal D de la distribución de materia
Palabras clave
Función de masa, teoría excursion set, fractal
Citas
- J. Peacock, Cosmological physics. Cambridge University
- Press, 1999. [Online]. Available: http://books.google.com.
- co/books?id=t8O-yylU0j0C
- V. Martínez and E. Saar, Statistics of the galaxy distribu-
- tion. Chapman & Hall/CRC, 2002. [Online]. Available:
- http://books.google.com.co/books?id=f-l9bB-7AQMC
- M. Longair, Galaxy formation, ser. Astronomy and
- astrophysics library. Springer, 2008. [Online]. Available:
- http://books.google.com.co/books?id=e-wJHSBOuZAC
- R. Wald, General Relativity. University of Chicago
- Press, 2010. [Online]. Available: http://books.google.com.
- co/books?id=9S-hzg6-moYC
- P. V. Gruji´c, “The concept of a hierarchical cosmos,” Pu-
- blications de l’Observatoire Astronomique de Beograd,
- vol. 75, pp. 257–262, Oct. 2003.
- A. Gabrielli, Sylos, M. Joyce, and L. Pietronero, Statistical
- Physics for Cosmic Structures. Springer Verlag, 2005.
- E. Komatsu, J. Dunkley, M. R. Nolta, C. L. Bennett,
- B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. Limon,
- L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut,
- S. S. Meyer, G. S. Tucker, J. L. Weiland, E. Wollack, and
- E. L. Wright, “Five-Year Wilkinson Microwave Aniso-
- tropy Probe Observations: Cosmological Interpretation,”
- ApJS, vol. 180, pp. 330–376, Feb. 2009.
- F. Caruso and V. Oguri, “The Cosmic Microwave Back-
- ground Spectrum and an Upper Limit for Fractal Space
- Dimensionality,” ApJ, vol. 694, pp. 151–153, Mar. 2009.
- N. Kobayashi, Y. Yamazaki, H. Kuninaka, M. Katori,
- M. Matsushita, S. Matsushita, and L.-Y. Chiang, “Fractal
- Structure of Isothermal Lines and Loops on the Cosmic
- Microwave Background,” Journal of the Physical Society
- of Japan, vol. 80, no. 7, p. 074003, Jul. 2011.
- G. Lemaître, “Expansion of the universe, A homogeneo-
- us universe of constant mass and increasing radius ac-
- counting for the radial velocity of extra-galactic nebulae,”
- MNRAS, vol. 91, pp. 483–490, Mar. 1931.
- H. P. Robertson, “Kinematics and World-Structure,” ApJ,
- vol. 82, p. 284, Nov. 1935.
- A. G. Walker, “On the formal comparison of Milne’s ki-
- nematical system with the systems of general relativity,”
- MNRAS, vol. 95, pp. 263–269, Jan. 1935.
- A. Friedmann, “On the Curvature of Space,” General Re-
- lativity and Gravitation, vol. 31, p. 1991, Dec. 1999.
- A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti,
- A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J.
- Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M.
- Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and
- J. Tonry, “Observational evidence from supernovae for
- an accelerating universe and a cosmological constant,”
- The Astronomical Journal, vol. 116, no. 3, p. 1009, 1998.
- [Online]. Available: http://stacks.iop.org/1538-3881/116/
- i=3/a=1009
- S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop,
- P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar,
- D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C.
- Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby,
- C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-
- Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filip-
- penko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M.
- Newberg, W. J. Couch, and T. S. C. Project, “Measure-
- ments of Ω and Λ from 42 High-Redshift Supernovae,”
- ApJ, vol. 517, pp. 565–586, Jun. 1999.
- M. Hamuy, S. C. Trager, P. A. Pinto, M. M. Phillips, R. A.
- Schommer, V. Ivanov, and N. B. Suntzeff, “A Search for
- Environmental Effects on Type IA Supernovae,” AJ, vol.
- , pp. 1479–1486, Sep. 2000.
- D. W. Hogg, D. J. Eisenstein, M. R. Blanton, N. A. Bah-
- call, J. Brinkmann, J. E. Gunn, and D. P. Schneider, “Cos-
- mic Homogeneity Demonstrated with Luminous Red Ga-
- laxies,” ApJ, vol. 624, pp. 54–58, May 2005.
- P. Sarkar, J. Yadav, B. Pandey, and S. Bharadwaj, “The
- scale of homogeneity of the galaxy distribution in SDSS
- DR6,” MNRAS, vol. 399, pp. L128–L131, Oct. 2009.
- S. Capozziello and S. Funkhouser, “Fractal Large-Scale
- Structure from a Stochastic Scaling Law Model,” Modern
- Physics Letters A, vol. 24, pp. 1743–1748, 2009.
- J. S. Bagla, J. Yadav, and T. R. Seshadri, “Fractal dimen-
- sions of a weakly clustered distribution and the scale of
- homogeneity,” MNRAS, vol. 390, pp. 829–838, Oct. 2008.
- M. Scrimgeour, T. Davis, C. Blake, J. B. James,
- G. Poole et al., “The WiggleZ Dark Energy Sur-
- vey: the transition to large-scale cosmic homogeneity,”
- Mon.Not.Roy.Astron.Soc., vol. 425, pp. 116–134, 2012.
- P. H. Coleman and L. Pietronero, “The fractal nature of
- the universe,” Physica A Statistical Mechanics and its
- Applications, vol. 185, pp. 45–55, Jun. 1992.
- S. Borgani, “The multifractal behaviour of hierarchical
- density distributions,” MNRAS, vol. 260, pp. 537–549,
- Feb. 1993.
- R. Durrer and F. Sylos Labini, “A fractal galaxy distri-
- bution in a homogeneous universe?” A&A, vol. 339, pp.
- L85–L88, Nov. 1998.
- J. Gaite, “The fractal distribution of haloes,” EPL
- (Europhysics Letters), vol. 71, no. 2, p. 332, 2005. [Online].
- Available: http://stacks.iop.org/0295-5075/71/i=2/a=332
- J. Gaite, “Halos and Voids in a Multifractal Model of
- Cosmic Structure,” ApJ, vol. 658, pp. 11–24, Mar. 2007.
- F. Sylos Labini, N. L. Vasilyev, L. Pietronero, and Y. V.
- Baryshev, “Absence of self-averaging and of homogeneity
- in the large-scale galaxy distribution,” EPL (Europhysics
- Letters), vol. 86, p. 49001, May 2009.
- A. O. Verevkin, Y. L. Bukhmastova, and Y. V. Baryshev,
- “The non-uniform distribution of galaxies from data of
- the SDSS DR7 survey,” Astronomy Reports, vol. 55, pp.
- –340, Apr. 2011.
- Y. Baryshev, “Field fractal cosmological model as an
- example of practical cosmology approach,” in Problems
- of Practical Cosmology, Volume 2, 2008, pp. 60–67.
- C. A. Chacón-Cardona and R. A. Casas-Miranda, “Millen-
- nium simulation dark matter haloes: multifractal and la-
- cunarity analysis and the transition to homogeneity,” MN-
- RAS, vol. 427, pp. 2613–2624, Dec. 2012.
- M. Joyce, F. Sylos Labini, A. Gabrielli, M. Montuori, and
- L. Pietronero, “Basic properties of galaxy clustering in the
- light of recent results from the Sloan Digital Sky Survey,”
- A&A, vol. 443, pp. 11–16, Nov. 2005.
- J. R. Mureika, “Fractal holography: a geometric re-
- interpretation of cosmological large scale structure,”
- JCAP, vol. 5, p. 21, May 2007.
- K. Enqvist, “Lemaitre Tolman Bondi model and acce-
- lerating expansion,” General Relativity and Gravitation,
- vol. 40, pp. 451–466, Feb. 2008.
- R. C. Tolman, “Effect of Inhomogeneity on Cosmological
- Models.” Proc Natl Acad Sci U S A, vol. 20, no. 3, pp. 169–
- , 1934. [Online]. Available: http://www.biomedsearch.
- com/nih/Effect-Inhomogeneity-Cosmological-Models/
- html
- H. Bondi, “Spherically symmetrical models in general
- relativity,” MNRAS, vol. 107, p. 410, 1947.
- W. B. Bonnor, “Evolution of inhomogeneous cosmologi-
- cal models,” MNRAS, vol. 167, pp. 55–62, Apr. 1974.
- F. Pompilio and M. Montuori, “An inhomogeneous fractal
- cosmological model,” Classical and Quantum Gravity,
- vol. 19, pp. 203–212, Jan. 2002.
- S. Viaggiu and M. Montuori, “How Large is the Contri-
- bution of Cosmic Web to Ωλ ? a Preliminary Study on a
- Novel Inhomogeneous Model,” International Journal of
- Modern Physics D, vol. 22, p. 50065, Aug. 2013.
- W. Rindler and D. Suson, “How to determine a Tolman-
- Bondi universe from ideal observable and theoretical rela-
- tions,” A&A, vol. 218, pp. 15–18, Jul. 1989.
- A. Mittal and D. Lohiya, “Fractal dust model of the univer-
- se based on Mandelbrot’s conditional cosmological princi-
- ple and general theory of relativity,” Fractals, vol. 11, pp.
- –153, 2003.
- N. P. Humphreys, D. R. Matravers, and R. Maartens,
- “Exact isotropic cosmologies with local fractal number
- counts,” Classical and Quantum Gravity, vol. 15, pp. 3041–
- , Oct. 1998.
- M.-N. Célérier, “Do we really see a cosmological constant
- in the supernovae data?” A&A, vol. 353, pp. 63–71, Jan.
- D. R. Matravers and N. P. Humphreys, “Matching Sphe-
- rical Dust Solutions to Construct Cosmological Models,”
- General Relativity and Gravitation, vol. 33, pp. 531–552,
- Mar. 2001.
- W. H. Press and P. Schechter, “Formation of Galaxies
- and Clusters of Galaxies by Self-Similar Gravitational
- Condensation,” ApJ, vol. 187, pp. 425–438, Feb. 1974.
- J. R. Bond, S. Cole, G. Efstathiou, and N. Kaiser, “Excur-
- sion set mass functions for hierarchical Gaussian fluctua-
- tions,” ApJ, vol. 379, pp. 440–460, Oct. 1991.
- C. Lacey and S. Cole, “Merger rates in hierarchical models
- of galaxy formation,” MNRAS, vol. 262, pp. 627–649, Jun.
- R. K. Sheth, “An excursion set model for the distribution
- of dark matter and dark matter haloes,” MNRAS, vol. 300,
- pp. 1057–1070, Nov. 1998.
- S. Chandrasekhar, “Stochastic problems in physics and
- astronomy,” Rev. Mod. Phys., vol. 15, pp. 1–89, Jan
- [Online]. Available: http://link.aps.org/doi/10.1103/
- RevModPhys.15.1
- R. K. Sheth and G. Tormen, “An excursion set model of
- hierarchical clustering: ellipsoidal collapse and the mo-
- ving barrier,” MNRAS, vol. 329, pp. 61–75, Jan. 2002.
- A. R. Zentner, “The Excursion Set Theory of Halo Mass
- Functions, Halo Clustering, and Halo Growth,” Internatio-
- nal Journal of Modern Physics D, vol. 16, pp. 763–815,
- J. Pan, Y. Wang, X. Chen, and L. F. A. Teodoro, “Effects
- of correlation between merging steps on the global halo
- formation,” MNRAS, vol. 389, pp. 461–468, Sep. 2008.
- J. Pan, “Fractional Brownian motion and the halo mass
- function,” MNRAS, vol. 374, pp. L6–L9, Jan. 2007.
- F. Sylos Labini and L. Amendola, “The Power Spectrum
- in a Strongly Inhomogenous Universe,” ApJ, vol. 468,
- p. L1, Sep. 1996.
- B. B. Mandelbrot, “Galaxy distributions and fractals.” As-
- trophysical Letters and Communications, vol. 36, pp. 1–5,
- Dec. 1997.
- V. V. Uchaikin, “If the Universe Were a Levy-Mandelbrot
- Fractal,” Gravitation and Cosmology, vol. 10, pp. 5–24,
- Jun. 2004.
- B. Mandelbrot, The fractal geometry of nature. W.H.
- Freeman, 1983. [Online]. Available: http://books.google.
- es/books?id=0R2LkE3N7-oC
- F. Sylos Labini, M. Montuori, and L. Pietronero, “Scale-
- invariance of galaxy clustering,” Phys. Rep., vol. 293, pp.
- –226, 1998.
- A. Jenkins, C. S. Frenk, S. D. M. White, J. M. Colberg,
- S. Cole, A. E. Evrard, H. M. P. Couchman, and N. Yoshida,
- “The mass function of dark matter haloes,” MNRAS, vol.
- , pp. 372–384, Feb. 2001.
- M. S. Warren, K. Abazajian, D. E. Holz, and L. Teodoro,
- “Precision Determination of the Mass Function of Dark
- Matter Halos,” ApJ, vol. 646, pp. 881–885, Aug. 2006.
- Z. L. Wen, J. L. Han, and F. S. Liu, “Mass function of rich
- galaxy clusters and its constraint on σ 8,” MNRAS, vol.
- , pp. 533–543, Sep. 2010.